Xiao Ye, Tianshu Jiang, Lingpu Ge, F. Sassa, Chuanjun Liu, Kenshin Hayashi
{"title":"Paper-based Chemiresistive Gas Sensor Using Molecularly Imprinted Sol-Gels for Volatile Organic Acids Detection","authors":"Xiao Ye, Tianshu Jiang, Lingpu Ge, F. Sassa, Chuanjun Liu, Kenshin Hayashi","doi":"10.1109/SENSORS47087.2021.9639251","DOIUrl":null,"url":null,"abstract":"Volatile organic acids are important compounds related to specific diseases from human body odor. In this research, paper-based chemiresistive gas sensor was proposed based on inkjet printing technology using desktop inkjet printer. We formulated an alcoholic-based ketjen black ink to construct conductive layer. In addition, molecularly imprinted sol-gels ink was synthesized to realize specific selectivity. To obtain best sensor performance, the main two parameters, template concentration and crosslinker/monomer ratio, were optimized. This work demonstrated that the paper-based MISG gas sensor have a great potential for rapid, sensitive, and selective gas detection.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"574 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile organic acids are important compounds related to specific diseases from human body odor. In this research, paper-based chemiresistive gas sensor was proposed based on inkjet printing technology using desktop inkjet printer. We formulated an alcoholic-based ketjen black ink to construct conductive layer. In addition, molecularly imprinted sol-gels ink was synthesized to realize specific selectivity. To obtain best sensor performance, the main two parameters, template concentration and crosslinker/monomer ratio, were optimized. This work demonstrated that the paper-based MISG gas sensor have a great potential for rapid, sensitive, and selective gas detection.