V. Q. Carneiro, Jussara Mencalha, I. C. Sant’anna, G. N. Silva, Júlio Augusto de Castro Miguel, P. Carneiro, M. Nascimento, C. Cruz
{"title":"A novel fuzzy approach to identify the phenotypic adaptability of common bean lines","authors":"V. Q. Carneiro, Jussara Mencalha, I. C. Sant’anna, G. N. Silva, Júlio Augusto de Castro Miguel, P. Carneiro, M. Nascimento, C. Cruz","doi":"10.4025/actasciagron.v45i1.59854","DOIUrl":null,"url":null,"abstract":"The genotype by environment interaction is the main factor that influences the response of evaluated genotypes in trials of value for cultivation and use. Adaptability and stability analyses are fundamental to understanding the performance of genotypes in a growing region. Some of these methodologies incorporate previous information for recommending an extra group of genotypes denominated as specific ideotypes under certain cultivation conditions. Based on this strategy, the centroid method and its modifications have been widely used due to the simplicity of classification of the evaluated genotypes. However, these methodologies present problems in identifying adaptability patterns of some genotypes. Artificial intelligence techniques, such as fuzzy C-means, can be an alternative to reduce these difficulties, since they use, in addition to distance information between genotypes, memberships (measures quantifying how much an observation belongs to a particular class) to increase discriminatory power. Therefore, our aim was to propose and evaluate the phenotypic adaptability method by fuzzy clustering to assist cultivar recommendations. The adaptation of the fuzzy C-Means method to classify the genotypes was implemented in BioFuzzy software. The grain yield data of black common bean genotypes were used to evaluate the potential of the method. The results obtained by this method were compared with those obtained by the centroid method. The phenotypic adaptability method by fuzzy clustering was effective in identifying the adaptability patterns of common bean genotypes. Moreover, the discriminatory power was higher than that observed with the centroid method.","PeriodicalId":56373,"journal":{"name":"Acta Scientiarum. Agronomy.","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum. Agronomy.","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4025/actasciagron.v45i1.59854","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The genotype by environment interaction is the main factor that influences the response of evaluated genotypes in trials of value for cultivation and use. Adaptability and stability analyses are fundamental to understanding the performance of genotypes in a growing region. Some of these methodologies incorporate previous information for recommending an extra group of genotypes denominated as specific ideotypes under certain cultivation conditions. Based on this strategy, the centroid method and its modifications have been widely used due to the simplicity of classification of the evaluated genotypes. However, these methodologies present problems in identifying adaptability patterns of some genotypes. Artificial intelligence techniques, such as fuzzy C-means, can be an alternative to reduce these difficulties, since they use, in addition to distance information between genotypes, memberships (measures quantifying how much an observation belongs to a particular class) to increase discriminatory power. Therefore, our aim was to propose and evaluate the phenotypic adaptability method by fuzzy clustering to assist cultivar recommendations. The adaptation of the fuzzy C-Means method to classify the genotypes was implemented in BioFuzzy software. The grain yield data of black common bean genotypes were used to evaluate the potential of the method. The results obtained by this method were compared with those obtained by the centroid method. The phenotypic adaptability method by fuzzy clustering was effective in identifying the adaptability patterns of common bean genotypes. Moreover, the discriminatory power was higher than that observed with the centroid method.
期刊介绍:
The journal publishes original articles in all areas of Agronomy, including soil sciences, agricultural entomology, soil fertility and manuring, soil physics, physiology of cultivated plants, phytopathology, phyto-health, phytotechny, genesis, morphology and soil classification, management and conservation of soil, integrated management of plant pests, vegetal improvement, agricultural microbiology, agricultural parasitology, production and processing of seeds.