Optimised Cluster-based Approach for Healthcare Data Analytics

IF 0.3
Amol Bhopale, Sanskar Zanwar, Aarya Balpande, Jaweria Kazi
{"title":"Optimised Cluster-based Approach for Healthcare Data Analytics","authors":"Amol Bhopale, Sanskar Zanwar, Aarya Balpande, Jaweria Kazi","doi":"10.47164/ijngc.v14i1.1011","DOIUrl":null,"url":null,"abstract":"Data analytics is an intriguing study due to the fact that an enormous volume of healthcare data is being generated by different smart IOT-based health tracking devices, and the Artificial Intelligent-based applications. Data analytic tools and unsupervised techniques combinedly make it possible to find and comprehend hidden patterns in a dataset that may not be visible through simple data display. Grouping of voluminous data objects into homogenous clusters is a crucial operation in soft computing. Choosing the right clustering technique and the correct number of partitions to divide the healthcare data for effective analysis is complicated and challenging most of the time. This research work examines clustering approaches on the healthcare datasets with the optimum K-clusters, in order to perform the analysis of the data. In this work, the K-means clustering method is examined and the silhouette score is computed to estimate the optimal K-value and the quality of the cluster.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"14 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data analytics is an intriguing study due to the fact that an enormous volume of healthcare data is being generated by different smart IOT-based health tracking devices, and the Artificial Intelligent-based applications. Data analytic tools and unsupervised techniques combinedly make it possible to find and comprehend hidden patterns in a dataset that may not be visible through simple data display. Grouping of voluminous data objects into homogenous clusters is a crucial operation in soft computing. Choosing the right clustering technique and the correct number of partitions to divide the healthcare data for effective analysis is complicated and challenging most of the time. This research work examines clustering approaches on the healthcare datasets with the optimum K-clusters, in order to perform the analysis of the data. In this work, the K-means clustering method is examined and the silhouette score is computed to estimate the optimal K-value and the quality of the cluster.
优化的基于集群的医疗数据分析方法
数据分析是一项有趣的研究,因为大量的医疗数据是由不同的基于物联网的智能健康跟踪设备和基于人工智能的应用程序生成的。数据分析工具和无监督技术的结合使得发现和理解数据集中隐藏的模式成为可能,这些模式可能无法通过简单的数据显示显示出来。将大量数据对象分组到同质集群中是软计算中的一个关键操作。选择正确的聚类技术和正确的分区数量来划分医疗保健数据以进行有效分析,在大多数情况下是复杂且具有挑战性的。本研究工作考察了医疗保健数据集的聚类方法,并采用最佳k -聚类,以便对数据进行分析。在这项工作中,检验了K-means聚类方法,并计算轮廓分数来估计最优k值和聚类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信