Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

IF 1.5 Q3 ENGINEERING, CHEMICAL
A. Ushakova, V. Zatsepin, M. Varfolomeev, D. Emelyanov
{"title":"Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process","authors":"A. Ushakova, V. Zatsepin, M. Varfolomeev, D. Emelyanov","doi":"10.1155/2017/2526596","DOIUrl":null,"url":null,"abstract":"Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/2526596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 39

Abstract

Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.
原位燃烧过程中烃类氧化自由基链机理的研究
尽管有大量的油氧化的原位燃烧模型,但许多影响仍然无法考虑。例如,到目前为止,氧化的初始阶段还没有从自由基链过程的角度来考虑。这是模拟注气采油过程的一个严重困难。为了研究氧化的初始阶段,本文考虑了化学反应的顺序,包括中间短寿命化合物和自由基。我们试图把反应的主要阶段与实验中观察到的放热面积联系起来。建立了以氧化反应方程为基础的微分方程组。对初始阶段过氧化物形成和放热开始的时间依赖性进行了解析推导。我们考虑了芳香油化合物对初始氧化阶段的抑制作用,并研究了诱导时间与温度的关系。给出了石蜡和原油在岩心样品存在下的链点火准则。计算结果与高压差示扫描量热法测定的氧化阶段进行了比较。根据实验观察,我们已经确定了哪些反应对这个过程是重要的,哪些反应可以忽略或合并为一个不重要的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信