Learning Text-image Joint Embedding for Efficient Cross-modal Retrieval with Deep Feature Engineering

Zhongwei Xie, Ling Liu, Yanzhao Wu, Luo Zhong, Lin Li
{"title":"Learning Text-image Joint Embedding for Efficient Cross-modal Retrieval with Deep Feature Engineering","authors":"Zhongwei Xie, Ling Liu, Yanzhao Wu, Luo Zhong, Lin Li","doi":"10.1145/3490519","DOIUrl":null,"url":null,"abstract":"This article introduces a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using Word2vec. We leverage Wide ResNet50 and Word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"25 1","pages":"1 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article introduces a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using Word2vec. We leverage Wide ResNet50 and Word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.
基于深度特征工程的文本-图像联合嵌入高效跨模态检索
本文引入了一种用于语义增强联合嵌入高效学习的两阶段深度特征工程框架,将数据预处理中的深度特征工程与文本-图像联合嵌入模型的训练清晰地分离开来。我们使用Recipe1M数据集进行技术描述和经验验证。在预处理中,我们将深度特征工程与原始文本-图像输入数据的语义上下文特征相结合,进行深度特征工程。我们利用LSTM识别关键术语,利用BERT家族的深度NLP模型、TextRank或TF-IDF为关键术语生成排名分数,然后使用Word2vec为每个关键术语生成向量表示。我们利用Wide ResNet50和Word2vec对食物图像的图像类别语义进行提取和编码,以帮助在联合潜在空间中对学习到的配方和图像嵌入进行语义对齐。在联合嵌入学习中,我们通过优化具有软裕度和双负采样的批处理硬三重损失函数来进行深度特征工程,同时考虑到基于类别的对齐损失和基于鉴别器的对齐损失。大量的实验表明,我们的深度特征工程的SEJE方法明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信