Proof of the Satisfiability Conjecture for Large k

Jian Ding, A. Sly, Nike Sun
{"title":"Proof of the Satisfiability Conjecture for Large k","authors":"Jian Ding, A. Sly, Nike Sun","doi":"10.1145/2746539.2746619","DOIUrl":null,"url":null,"abstract":"We establish the satisfiability threshold for random k-SAT for all k ≥ k0. That is, there exists a limiting density αs(k) such that a random k-SAT formula of clause density α is with high probability satisfiable for α < αs, and unsatisfiable for α > αs. The satisfiability threshold αs is given explicitly by the one-step replica symmetry breaking (1SRB) prediction from statistical physics. We believe that our methods may apply to a range of random constraint satisfaction problems in the 1RSB class.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

Abstract

We establish the satisfiability threshold for random k-SAT for all k ≥ k0. That is, there exists a limiting density αs(k) such that a random k-SAT formula of clause density α is with high probability satisfiable for α < αs, and unsatisfiable for α > αs. The satisfiability threshold αs is given explicitly by the one-step replica symmetry breaking (1SRB) prediction from statistical physics. We believe that our methods may apply to a range of random constraint satisfaction problems in the 1RSB class.
大k的可满足性猜想的证明
我们建立了所有k≥k0的随机k- sat的可满足阈值。即存在一个极限密度αs(k),使得子句密度α的随机k- sat公式在α < αs时大概率可满足,在α > αs时大概率不满足。通过统计物理的一步复制对称破缺(1SRB)预测,明确给出了可满足阈值αs。我们相信我们的方法可以应用于1RSB类中的一系列随机约束满足问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信