{"title":"A scale and shift paradigm for sparse interpolation in one and more dimensions","authors":"A. Cuyt, Wen-shin Lee","doi":"10.1145/3313880.3313887","DOIUrl":null,"url":null,"abstract":"Sparse interpolation from at least 2n uniformly spaced interpolation points tj can be traced back to the exponential fitting method\n [MATH HERE]\n of de Prony from the 18-th century [5]. Almost 200 years later this basic problem is also reformulated as a generalized eigenvalue problem [8]. We generalize (1) to sparse interpolation problems of the form\n [MATH HERE]\n and some multivariate formulations thereof, from corresponding regular interpolation point patterns. Concurrently we introduce the wavelet inspired paradigm of dilation and translation for the analysis (2) of these complex-valued structured univariate or multivariate samples. The new method is the result of a search on how to solve ambiguity problems in exponential analysis, such as aliasing which arises from too coarsely sampled data, or collisions which may occur when handling projected data.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"19 1","pages":"75-77"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313880.3313887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse interpolation from at least 2n uniformly spaced interpolation points tj can be traced back to the exponential fitting method
[MATH HERE]
of de Prony from the 18-th century [5]. Almost 200 years later this basic problem is also reformulated as a generalized eigenvalue problem [8]. We generalize (1) to sparse interpolation problems of the form
[MATH HERE]
and some multivariate formulations thereof, from corresponding regular interpolation point patterns. Concurrently we introduce the wavelet inspired paradigm of dilation and translation for the analysis (2) of these complex-valued structured univariate or multivariate samples. The new method is the result of a search on how to solve ambiguity problems in exponential analysis, such as aliasing which arises from too coarsely sampled data, or collisions which may occur when handling projected data.