Brief Announcement: Temporal Locality in Online Algorithms

Maciej Pacut, Mahmoud Parham, J. Rybicki, Stefan Schmid, J. Suomela, A. Tereshchenko
{"title":"Brief Announcement: Temporal Locality in Online Algorithms","authors":"Maciej Pacut, Mahmoud Parham, J. Rybicki, Stefan Schmid, J. Suomela, A. Tereshchenko","doi":"10.4230/LIPIcs.DISC.2022.52","DOIUrl":null,"url":null,"abstract":"Online algorithms make decisions based on past inputs, with the goal of being competitive against an algorithm that sees also future inputs. In this work, we introduce time-local online algorithms ; these are online algorithms in which the output at any given time is a function of only T latest inputs. Our main observation is that time-local online algorithms are closely connected to local distributed graph algorithms : distributed algorithms make decisions based on the local information in the spatial dimension , while time-local online algorithms make decisions based on the local information in the temporal dimension . We formalize this connection, and show how we can directly use the tools developed to study distributed approximability of graph optimization problems to prove upper and lower bounds on the competitive ratio achieved with time-local online algorithms. Moreover, we show how to use computational techniques to synthesize optimal time-local algorithms.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"54 1","pages":"52:1-52:3"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2022.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Online algorithms make decisions based on past inputs, with the goal of being competitive against an algorithm that sees also future inputs. In this work, we introduce time-local online algorithms ; these are online algorithms in which the output at any given time is a function of only T latest inputs. Our main observation is that time-local online algorithms are closely connected to local distributed graph algorithms : distributed algorithms make decisions based on the local information in the spatial dimension , while time-local online algorithms make decisions based on the local information in the temporal dimension . We formalize this connection, and show how we can directly use the tools developed to study distributed approximability of graph optimization problems to prove upper and lower bounds on the competitive ratio achieved with time-local online algorithms. Moreover, we show how to use computational techniques to synthesize optimal time-local algorithms.
简短公告:在线算法的时间局部性
在线算法根据过去的输入做出决策,其目标是与能够看到未来输入的算法竞争。在这项工作中,我们引入了时间本地在线算法;这些是在线算法,其中任意给定时间的输出仅是T个最新输入的函数。我们的主要观察是,时间局部在线算法与局部分布式图算法密切相关:分布式算法基于空间维度的局部信息进行决策,而时间局部在线算法基于时间维度的局部信息进行决策。我们形式化了这种联系,并展示了我们如何直接使用开发的工具来研究图优化问题的分布近似性,以证明用时间局部在线算法实现的竞争比的上界和下界。此外,我们展示了如何使用计算技术来合成最优的时间局部算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信