{"title":"Characterizations of Jordan *-derivations on Banach *-algebras","authors":"G. An, Ying Yao","doi":"10.11648/J.PAMJ.20200905.13","DOIUrl":null,"url":null,"abstract":"Suppose that is a real or complex unital Banach *-algebra, is a unital Banach -bimodule, and G ∈ is a left separating point of . In this paper, we investigate whether the additive mapping δ: → satisfies the condition A,B ∈ , AB = G ⇒ Aδ(B)+δ(A)B*= δ(G) characterize Jordan *-derivations. Initially, we prove that if is a real unital C*-algebra and G = I is the unit element in , then δ (non-necessarily continuous) is a Jordan *-derivation. In addition, we prove that if is a real unital C*-algebra and δ is continuous, then δ is a Jordan *-derivation. Finally, we show that if is a complex factor von Neumann algebra and δ is linear, then δ (non-necessarily continuous) is equal to zero.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"31 1","pages":"96"},"PeriodicalIF":0.2000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20200905.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Suppose that is a real or complex unital Banach *-algebra, is a unital Banach -bimodule, and G ∈ is a left separating point of . In this paper, we investigate whether the additive mapping δ: → satisfies the condition A,B ∈ , AB = G ⇒ Aδ(B)+δ(A)B*= δ(G) characterize Jordan *-derivations. Initially, we prove that if is a real unital C*-algebra and G = I is the unit element in , then δ (non-necessarily continuous) is a Jordan *-derivation. In addition, we prove that if is a real unital C*-algebra and δ is continuous, then δ is a Jordan *-derivation. Finally, we show that if is a complex factor von Neumann algebra and δ is linear, then δ (non-necessarily continuous) is equal to zero.
期刊介绍:
The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.