Reconstruction formula for differential systems with a singularity

IF 0.4 Q4 MATHEMATICS
M. Ignatyev
{"title":"Reconstruction formula for differential systems with a singularity","authors":"M. Ignatyev","doi":"10.18500/1816-9791-2021-21-3-282-293","DOIUrl":null,"url":null,"abstract":"Our studies concern some aspects of scattering theory of the singular differential systems $ y'-x^{-1}Ay-q(x)y=\\rho By, \\ x>0 $ with $n\\times n$ matrices $A,B, q(x), x\\in(0,\\infty)$, where $A,B$ are constant and $\\rho$ is a spectral parameter. We concentrate on the important special case when $q(\\cdot)$ is smooth and $q(0)=0$ and derive a formula that express such $q(\\cdot)$ in the form of some special contour integral, where the kernel can be written in terms of the Weyl - type solutions of the considered differential system. Formulas of such a type play an important role in constructive solution of inverse scattering problems: use of such formulas, where the terms in their right-hand sides are previously found from the so-called main equation, provides a final step of the solution procedure. In order to obtain the above-mentioned reconstruction formula we establish first the asymptotical expansions for the Weyl - type solutions as $\\rho\\to\\infty$ with $o\\left(\\rho^{-1}\\right)$ rate remainder estimate.","PeriodicalId":42789,"journal":{"name":"Izvestiya of Saratov University Mathematics Mechanics Informatics","volume":"os-47 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya of Saratov University Mathematics Mechanics Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/1816-9791-2021-21-3-282-293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Our studies concern some aspects of scattering theory of the singular differential systems $ y'-x^{-1}Ay-q(x)y=\rho By, \ x>0 $ with $n\times n$ matrices $A,B, q(x), x\in(0,\infty)$, where $A,B$ are constant and $\rho$ is a spectral parameter. We concentrate on the important special case when $q(\cdot)$ is smooth and $q(0)=0$ and derive a formula that express such $q(\cdot)$ in the form of some special contour integral, where the kernel can be written in terms of the Weyl - type solutions of the considered differential system. Formulas of such a type play an important role in constructive solution of inverse scattering problems: use of such formulas, where the terms in their right-hand sides are previously found from the so-called main equation, provides a final step of the solution procedure. In order to obtain the above-mentioned reconstruction formula we establish first the asymptotical expansions for the Weyl - type solutions as $\rho\to\infty$ with $o\left(\rho^{-1}\right)$ rate remainder estimate.
具有奇异点的微分系统的重构公式
我们的研究涉及奇异微分系统$ y'-x^{-1}Ay-q(x)y=\rho By, \ x>0 $的散射理论的一些方面,其中$n\times n$矩阵$A,B, q(x), x\in(0,\infty)$, $A,B$是常数,$\rho$是一个光谱参数。我们集中于$q(\cdot)$是光滑的和$q(0)=0$的重要特殊情况,并推导出一个公式,以某种特殊的轮廓积分的形式表示这种$q(\cdot)$,其中核可以用所考虑的微分系统的Weyl型解来表示。这种类型的公式在逆散射问题的构造解中起着重要的作用:使用这种公式,其中右手边的项先前从所谓的主方程中找到,为求解过程提供了最后一步。为了得到上述重构公式,我们首先建立了Weyl型解的渐近展开式$\rho\to\infty$和$o\left(\rho^{-1}\right)$率余估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
35
审稿时长
38 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信