{"title":"A novel optical signal-to-noise ratio monitoring technique based on Gaussian process regression","authors":"Yanhui Ran, H. Chunjie, Li Wei","doi":"10.12086/OEE.2021.200077","DOIUrl":null,"url":null,"abstract":"We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique that uses a commercially available widely tunable optical bandpass filter to sample the measured optical power as input features of Gaussian process regression (GPR) can accurately estimate the large dynamic range OSNR and is not affected by the configuration of the optical link, and has the characteristics of distributed and low cost. Experimental results for 32 Gbaud PDM-16QAM signals demonstrate OSNR monitoring with the root mean squared error (RMSE) of 0.429 dB and the mean absolute error (MAE) of 0.294 dB within a large OSNR range of -1 dB~30 dB. Moreover, our proposed technique is proved to be insensitive to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascaded filtering effect (CFE). Furthermore, our proposed technique has the potential to be employed for link monitoring at the intermediation nodes without knowing the transmission information and is more convenient to operate because no calibration is required.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"53 1","pages":"200077"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique that uses a commercially available widely tunable optical bandpass filter to sample the measured optical power as input features of Gaussian process regression (GPR) can accurately estimate the large dynamic range OSNR and is not affected by the configuration of the optical link, and has the characteristics of distributed and low cost. Experimental results for 32 Gbaud PDM-16QAM signals demonstrate OSNR monitoring with the root mean squared error (RMSE) of 0.429 dB and the mean absolute error (MAE) of 0.294 dB within a large OSNR range of -1 dB~30 dB. Moreover, our proposed technique is proved to be insensitive to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascaded filtering effect (CFE). Furthermore, our proposed technique has the potential to be employed for link monitoring at the intermediation nodes without knowing the transmission information and is more convenient to operate because no calibration is required.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing