Shape parameter estimation in RBF function approximation

Q4 Engineering
A. Karageorghis, P. Tryfonos
{"title":"Shape parameter estimation in RBF function approximation","authors":"A. Karageorghis, P. Tryfonos","doi":"10.2495/cmem-v7-n3-246-259","DOIUrl":null,"url":null,"abstract":"The radial basis function (RBF) collocation method is applied for the approximation of functions in two variables. When the RBFs employed include a shape parameter, the determination of an appropriate value for it is a major issue. In this work, this is addressed by including the value of the shape parameter in the unknowns along with the coefficients of the RBFs in the approximation. The variable shape parameter case when a different shape parameter is associated with each RBF in the approximation is also considered. Both approaches yield nonlinear systems of equations, which are solved by a standard non-linear solver. The results of several numerical experiments are presented.","PeriodicalId":36958,"journal":{"name":"International Journal of Computational Methods and Experimental Measurements","volume":"6 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods and Experimental Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/cmem-v7-n3-246-259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

The radial basis function (RBF) collocation method is applied for the approximation of functions in two variables. When the RBFs employed include a shape parameter, the determination of an appropriate value for it is a major issue. In this work, this is addressed by including the value of the shape parameter in the unknowns along with the coefficients of the RBFs in the approximation. The variable shape parameter case when a different shape parameter is associated with each RBF in the approximation is also considered. Both approaches yield nonlinear systems of equations, which are solved by a standard non-linear solver. The results of several numerical experiments are presented.
RBF函数逼近中的形状参数估计
采用径向基函数(RBF)配置法对两变量函数进行逼近。当所使用的rbf包含形状参数时,为其确定适当的值是一个主要问题。在这项工作中,这是通过在未知量中包括形状参数的值以及近似中rbf的系数来解决的。还考虑了在近似中每个RBF都有不同的形状参数时形状参数变的情况。这两种方法都产生非线性方程组,用标准非线性求解器求解。给出了几个数值实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
24
审稿时长
33 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信