On the signal amplitude asymmetry in nonlinear propagation

F. Prieur
{"title":"On the signal amplitude asymmetry in nonlinear propagation","authors":"F. Prieur","doi":"10.1121/2.0000849","DOIUrl":null,"url":null,"abstract":"Nonlinear propagation of high intensity ultrasound beams combined with diffraction generates signal amplitude asymmetry. To try to explain this phenomenon we model the nonlinear pulse as a sum of harmonic signals. The phase of each harmonic signal differs from that of a plane wave of same frequency and same origin by a unique phase angle: the phase parameter Psi. For physical pulses, Psi varies between -pi/2 for no amplitude asymmetry and 0 for maximum asymmetry. Using numerical simulations we compute the amplitude of the harmonic components of a signal propagating nonlinearly and generated by a piston source. As the input pressure level increases, Psi gets closer to 0 at the shock distance leading to a larger peak-positive to peak-negative pressure ratio. Beyond the shock distance Psi tends faster towards -pi/2 with increasing input pressure. The variations of Psi are also linked to the 90 degree phase shift of the fundamental signal from near to far field. This phase jump contributes to the emergence of...","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nonlinear propagation of high intensity ultrasound beams combined with diffraction generates signal amplitude asymmetry. To try to explain this phenomenon we model the nonlinear pulse as a sum of harmonic signals. The phase of each harmonic signal differs from that of a plane wave of same frequency and same origin by a unique phase angle: the phase parameter Psi. For physical pulses, Psi varies between -pi/2 for no amplitude asymmetry and 0 for maximum asymmetry. Using numerical simulations we compute the amplitude of the harmonic components of a signal propagating nonlinearly and generated by a piston source. As the input pressure level increases, Psi gets closer to 0 at the shock distance leading to a larger peak-positive to peak-negative pressure ratio. Beyond the shock distance Psi tends faster towards -pi/2 with increasing input pressure. The variations of Psi are also linked to the 90 degree phase shift of the fundamental signal from near to far field. This phase jump contributes to the emergence of...
非线性传播中信号幅值的不对称性
高强度超声波束的非线性传播与衍射相结合会产生信号幅值不对称。为了解释这一现象,我们将非线性脉冲建模为谐波信号的和。每个谐波信号的相位与相同频率和相同来源的平面波的相位有一个独特的相位角:相位参数Psi。对于物理脉冲,Psi在无振幅不对称的-pi/2和最大不对称的0之间变化。利用数值模拟计算了由活塞源产生的非线性传播信号的谐波分量的幅值。随着输入压力等级的增加,在激波距离处Psi越来越接近于0,导致峰值正压比与峰值负压比增大。在激波距离之外,随着输入压力的增加,Psi趋向于-pi/2的速度更快。Psi的变化也与基本信号从近场到远场的90度相移有关。这一阶段的跳跃导致了……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信