S. Geprägs, B. Skovdal, M. Scheufele, M. Opel, D. Wermeille, P. Thompson, A. Bombardi, V. Simonet, S. Grenier, P. Lejay, G. Chahine, D. Quintero-Castro, R. Gross, D. Mannix
{"title":"Precise control of \nJeff=12\n magnetic properties in \nSr2IrO4\n epitaxial thin films by variation of strain and thin film thickness","authors":"S. Geprägs, B. Skovdal, M. Scheufele, M. Opel, D. Wermeille, P. Thompson, A. Bombardi, V. Simonet, S. Grenier, P. Lejay, G. Chahine, D. Quintero-Castro, R. Gross, D. Mannix","doi":"10.1103/physrevb.102.214402","DOIUrl":null,"url":null,"abstract":"We report on a comprehensive investigation of the effects of strain and film thickness on the structural and magnetic properties of epitaxial thin films of the prototypal $J_\\mathrm{eff}=1/2$ compound Sr$_2$IrO$_4$ by advanced X-ray scattering. We find that the Sr$_2$IrO$_4$ thin films can be grown fully strained up to a thickness of 108 nm. By using X-ray resonant scattering, we show that the out-of-plane magnetic correlation length is strongly dependent on the thin film thickness, but independent of the strain state of the thin films. This can be used as a finely tuned dial to adjust the out-of-plane magnetic correlation length and transform the magnetic anisotropy from two-dimensional (2D) to three-dimensional (3D) behavior by incrementing film thickness. These results provide a clearer picture for the systematic control of the magnetic degrees of freedom in epitaxial thin films of Sr$_2$IrO$_4$ and bring to light the potential for a rich playground to explore the physics of $5d$-transition metal compounds.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.214402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We report on a comprehensive investigation of the effects of strain and film thickness on the structural and magnetic properties of epitaxial thin films of the prototypal $J_\mathrm{eff}=1/2$ compound Sr$_2$IrO$_4$ by advanced X-ray scattering. We find that the Sr$_2$IrO$_4$ thin films can be grown fully strained up to a thickness of 108 nm. By using X-ray resonant scattering, we show that the out-of-plane magnetic correlation length is strongly dependent on the thin film thickness, but independent of the strain state of the thin films. This can be used as a finely tuned dial to adjust the out-of-plane magnetic correlation length and transform the magnetic anisotropy from two-dimensional (2D) to three-dimensional (3D) behavior by incrementing film thickness. These results provide a clearer picture for the systematic control of the magnetic degrees of freedom in epitaxial thin films of Sr$_2$IrO$_4$ and bring to light the potential for a rich playground to explore the physics of $5d$-transition metal compounds.