An adaptive feature selection method for microarray data analysis

Jie Cheng, J. Greshock, Leming Shi, Jeffery L. Painter, Xiwu Lin, Kwan R. Lee, Shu Zheng, R. Wooster, L. Pusztai, A. Menius
{"title":"An adaptive feature selection method for microarray data analysis","authors":"Jie Cheng, J. Greshock, Leming Shi, Jeffery L. Painter, Xiwu Lin, Kwan R. Lee, Shu Zheng, R. Wooster, L. Pusztai, A. Menius","doi":"10.1109/BIBM.2012.6392686","DOIUrl":null,"url":null,"abstract":"Feature selection is one of the most important research topics in high dimensional array data analysis. We propose a two-way filtering based method that utilizes a pair of statistics coupled with rigorous cross-validation to identify the most informative features from different types of distributions. We evaluate the utility of the proposed adaptive feature selection method on six MicroArray Quality Control Phase II (MAQC-II) datasets. The results show that our method yields models with significantly fewer features and can achieve comparable or superior classification performance compared to models generated from other feature selection methods, suggesting high quality feature selection.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Feature selection is one of the most important research topics in high dimensional array data analysis. We propose a two-way filtering based method that utilizes a pair of statistics coupled with rigorous cross-validation to identify the most informative features from different types of distributions. We evaluate the utility of the proposed adaptive feature selection method on six MicroArray Quality Control Phase II (MAQC-II) datasets. The results show that our method yields models with significantly fewer features and can achieve comparable or superior classification performance compared to models generated from other feature selection methods, suggesting high quality feature selection.
微阵列数据分析中的自适应特征选择方法
特征选择是高维阵列数据分析中的重要研究课题之一。我们提出了一种基于双向过滤的方法,该方法利用一对统计数据加上严格的交叉验证,从不同类型的分布中识别出信息量最大的特征。我们评估了所提出的自适应特征选择方法在六个MicroArray质量控制阶段II (MAQC-II)数据集上的效用。结果表明,与其他特征选择方法产生的模型相比,我们的方法产生的模型特征明显减少,并且可以达到相当或更好的分类性能,表明我们的方法可以获得高质量的特征选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信