Analytical Investigation of Third-Order Time-Fractional Dispersive Partial Differential Equations Using Sumudu Transform Iterative Method

IF 0.3 Q4 MATHEMATICS, APPLIED
R. K. Bairwa
{"title":"Analytical Investigation of Third-Order Time-Fractional Dispersive Partial Differential Equations Using Sumudu Transform Iterative Method","authors":"R. K. Bairwa","doi":"10.22457/jmi.v23a02210","DOIUrl":null,"url":null,"abstract":"This paper investigates the approximate analytical solutions of third-order timefractional dispersive partial differential equations in one-and higher-dimensional spaces by employing a newly developed analytical method, the Sumudu transform iterative method. To express fractional derivatives, the Caputo operator is used. Furthermore, the results of this investigation are graphically represented, and the solution graphs reveal that the approximate solutions are closely connected to the exact solutions.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"46 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/jmi.v23a02210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the approximate analytical solutions of third-order timefractional dispersive partial differential equations in one-and higher-dimensional spaces by employing a newly developed analytical method, the Sumudu transform iterative method. To express fractional derivatives, the Caputo operator is used. Furthermore, the results of this investigation are graphically represented, and the solution graphs reveal that the approximate solutions are closely connected to the exact solutions.
用Sumudu变换迭代法分析三阶时间分数阶色散偏微分方程
本文采用一种新的解析方法——Sumudu变换迭代法,研究了一维和高维空间中三阶时间分数阶色散偏微分方程的近似解析解。为了表示分数阶导数,使用卡普托算子。此外,本研究的结果用图形表示,解图显示了近似解与精确解密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信