Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation

Weiwei Ao, J. Dávila, Manuel del Pino, M. Musso, Juncheng Wei
{"title":"Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation","authors":"Weiwei Ao, J. Dávila, Manuel del Pino, M. Musso, Juncheng Wei","doi":"10.1090/TRAN/8406","DOIUrl":null,"url":null,"abstract":"For the generalized surface quasi-geostrophic equation $$\\left\\{ \\begin{aligned} & \\partial_t \\theta+u\\cdot \\nabla \\theta=0, \\quad \\text{in } \\mathbb{R}^2 \\times (0,T), \\\\ & u=\\nabla^\\perp \\psi, \\quad \\psi = (-\\Delta)^{-s}\\theta \\quad \\text{in } \\mathbb{R}^2 \\times (0,T) , \\end{aligned} \\right. $$ $0<s<1$, we consider for $k\\ge1$ the problem of finding a family of $k$-vortex solutions $\\theta_\\varepsilon(x,t)$ such that as $\\varepsilon\\to 0$ $$ \\theta_\\varepsilon(x,t) \\rightharpoonup \\sum_{j=1}^k m_j\\delta(x-\\xi_j(t)) $$ for suitable trajectories for the vortices $x=\\xi_j(t)$. We find such solutions in the special cases of vortices travelling with constant speed along one axis or rotating with same speed around the origin. In those cases the problem is reduced to a fractional elliptic equation which is treated with singular perturbation methods. A key element in our construction is a proof of the non-degeneracy of the radial ground state for the so-called fractional plasma problem $$(-\\Delta)^sW = (W-1)^\\gamma_+, \\quad \\text{in } \\mathbb{R}^2, \\quad 1<\\gamma < \\frac{1+s}{1-s}$$ whose existence and uniqueness have recently been proven in \\cite{chan_uniqueness_2020}.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

For the generalized surface quasi-geostrophic equation $$\left\{ \begin{aligned} & \partial_t \theta+u\cdot \nabla \theta=0, \quad \text{in } \mathbb{R}^2 \times (0,T), \\ & u=\nabla^\perp \psi, \quad \psi = (-\Delta)^{-s}\theta \quad \text{in } \mathbb{R}^2 \times (0,T) , \end{aligned} \right. $$ $0
广义无粘面拟地转方程的移动解和旋转解
对于广义曲面准地转方程$$\left\{ \begin{aligned} & \partial_t \theta+u\cdot \nabla \theta=0, \quad \text{in } \mathbb{R}^2 \times (0,T), \\ & u=\nabla^\perp \psi, \quad \psi = (-\Delta)^{-s}\theta \quad \text{in } \mathbb{R}^2 \times (0,T) , \end{aligned} \right. $$$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信