{"title":"Biomass-derived nano-catalyst for biodiesel production from waste cooking oil","authors":"Anodar Ratchawet, P. Chaiworn","doi":"10.54279/mijeec.v4i3.248241","DOIUrl":null,"url":null,"abstract":"This study aimed to produce a nanocatalysts from inexpensive barley straw using nickel (Ni) and cobalt (Co) to support waste cooking oil-based biodiesel production. At 400 °C without oxygen and 1-5 bars of pressure, the gasification procedure of barley straw biomass (100g dry basis) was utilized in a muffle furnace with Ni and Co nano-catalysts. The biomass:Ni:Co catalyst mixing ratio is 1:1:1. The catalyst content and reaction time were applied for 2 hours. Then, at molar ratios of methanol:oil (6:1, 9:1, and 12:1) with the amount of catalyst (1, 2, and 3% weight percent basis), at 2 hours reaction time. Accordingly, the factors impacting the transesterification of biodiesel synthesis were evaluated. The process employing methanol:oil molar ratio of 6:1 and a catalyst quantity of 2% wt was the best for producing biodiesel. Based on the results of this study, nanocatalysts formed from biomass, which can be obtained from agricultural waste, hold commercial promise as a catalyst source for biodiesel.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v4i3.248241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to produce a nanocatalysts from inexpensive barley straw using nickel (Ni) and cobalt (Co) to support waste cooking oil-based biodiesel production. At 400 °C without oxygen and 1-5 bars of pressure, the gasification procedure of barley straw biomass (100g dry basis) was utilized in a muffle furnace with Ni and Co nano-catalysts. The biomass:Ni:Co catalyst mixing ratio is 1:1:1. The catalyst content and reaction time were applied for 2 hours. Then, at molar ratios of methanol:oil (6:1, 9:1, and 12:1) with the amount of catalyst (1, 2, and 3% weight percent basis), at 2 hours reaction time. Accordingly, the factors impacting the transesterification of biodiesel synthesis were evaluated. The process employing methanol:oil molar ratio of 6:1 and a catalyst quantity of 2% wt was the best for producing biodiesel. Based on the results of this study, nanocatalysts formed from biomass, which can be obtained from agricultural waste, hold commercial promise as a catalyst source for biodiesel.