Robustness of polynomial stability with respect to sampling

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
M. Wakaiki
{"title":"Robustness of polynomial stability with respect to sampling","authors":"M. Wakaiki","doi":"10.1051/cocv/2023035","DOIUrl":null,"url":null,"abstract":"We provide a partially affirmative answer to the following question on robustness of polynomial stability with respect to sampling: “Suppose that a continuous-time state-feedback controller achieves the polynomial stability of the infinite-dimensional linear system. We apply an idealized sampler and a zero-order hold to a feedback loop around the controller. Then, is the sampled-data system strongly stable for all sufficiently small sampling periods? Furthermore, is the polynomial decay of the continuous-time system transferred to the sampled-data system under sufficiently fast sampling?” The generator of the open-loop system is assumed to be a Riesz-spectral operator whose eigenvalues are not on the imaginary axis but may approach it asymptotically. We provide conditions for strong stability to be preserved under fast sampling. Moreover, we estimate the decay rate of the state of the sampled-data system with a smooth initial state and a sufficiently small sampling period.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a partially affirmative answer to the following question on robustness of polynomial stability with respect to sampling: “Suppose that a continuous-time state-feedback controller achieves the polynomial stability of the infinite-dimensional linear system. We apply an idealized sampler and a zero-order hold to a feedback loop around the controller. Then, is the sampled-data system strongly stable for all sufficiently small sampling periods? Furthermore, is the polynomial decay of the continuous-time system transferred to the sampled-data system under sufficiently fast sampling?” The generator of the open-loop system is assumed to be a Riesz-spectral operator whose eigenvalues are not on the imaginary axis but may approach it asymptotically. We provide conditions for strong stability to be preserved under fast sampling. Moreover, we estimate the decay rate of the state of the sampled-data system with a smooth initial state and a sufficiently small sampling period.
多项式稳定性对采样的鲁棒性
对于多项式稳定性的鲁棒性问题,我们给出了一个部分肯定的答案:“假设一个连续时间状态反馈控制器实现了无限维线性系统的多项式稳定性。我们将一个理想采样器和一个零阶保持器应用于控制器周围的反馈回路。那么,采样数据系统是否在所有足够小的采样周期内都是强稳定的?此外,在足够快的采样条件下,连续时间系统的多项式衰减是否转移到采样数据系统?假设开环系统的发生器是一个riesz谱算子,其特征值不在虚轴上,但可以渐近地接近它。我们提供了在快速采样下保持强稳定性的条件。此外,我们估计了具有光滑初始状态和足够小采样周期的采样数据系统的状态衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信