{"title":"State-Space Modeling of a Rocket for Optimal Control System Design","authors":"Aliyu Bhar Kisabo, Aliyu Funmilayo Adebimpe","doi":"10.5772/intechopen.82292","DOIUrl":null,"url":null,"abstract":"This chapter is the first of two others that will follow (a three-chapter series). Here we present the derivation of the mathematical model for a rocket ’ s autopilots in state space. The basic equations defining the airframe dynamics of a typical six degrees of freedom (6DoFs) are nonlinear and coupled . Separation of these nonlinear coupled dynamics is presented in this chapter to isolate the lateral dynamics from the longitudinal dynamics. Also, the need to determine aerodynamic coefficients and their derivative components is brought to light here. This is the crux of the equation. Methods of obtaining such coeffi- cients and their derivatives in a sequential form are also put forward. After the aerodynamic coefficients and their derivatives are obtained, the next step is to trim and linearize the decoupled nonlinear 6DoFs. In a novel way, we presented the linearization of the decoupled 6DoF equations in a generalized form. This should provide a lucid and easy way to implement trim and linearization in a computer program. The longitudinal model of a rocket presented in this chapter will serve as the main mathematical model in two other chapters that follow in this book.","PeriodicalId":35288,"journal":{"name":"弹道学报","volume":"os-17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"弹道学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.5772/intechopen.82292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
This chapter is the first of two others that will follow (a three-chapter series). Here we present the derivation of the mathematical model for a rocket ’ s autopilots in state space. The basic equations defining the airframe dynamics of a typical six degrees of freedom (6DoFs) are nonlinear and coupled . Separation of these nonlinear coupled dynamics is presented in this chapter to isolate the lateral dynamics from the longitudinal dynamics. Also, the need to determine aerodynamic coefficients and their derivative components is brought to light here. This is the crux of the equation. Methods of obtaining such coeffi- cients and their derivatives in a sequential form are also put forward. After the aerodynamic coefficients and their derivatives are obtained, the next step is to trim and linearize the decoupled nonlinear 6DoFs. In a novel way, we presented the linearization of the decoupled 6DoF equations in a generalized form. This should provide a lucid and easy way to implement trim and linearization in a computer program. The longitudinal model of a rocket presented in this chapter will serve as the main mathematical model in two other chapters that follow in this book.
期刊介绍:
Journal of Ballistics is an academic journal published by China Association for Science and Technology (CAST) and sponsored by China Society of Military Science and Industry (CSMI) at home and abroad. Founded in 1989, it is the only academic journal in the field of ballistics in China. The purpose of the journal is to exchange the latest achievements and related applications in the field of ballistics, introduce the new technology of ballistic testing, broaden the channels of information exchange, exchange academic ideas, promote the development of ballistics and military-industrial technology, and work hard to achieve the modernisation of national defence.
Journal of Ballistics is a Scopus-listed journal, Chinese core journal, Chinese science and technology core journal and CSCD core journal. The Honorary Editor-in-Chief is Academician Li Hongzhi, an academician of the Chinese Academy of Engineering, and the Editor-in-Chief, Professor Wang Zhongyuan, is a Distinguished Professor of the Yangtze River Scholars Award Scheme.
Journal of Ballistics mainly publishes the latest research results in the fields of ballistics, including internal ballistics, intermediate ballistics, external ballistics, underwater ballistics, terminal ballistics, trauma ballistics, experimental ballistics, launch dynamics, aerodynamics, flight mechanics, navigation and guidance, ballistic design and control, ballistic system synthesis and analysis, ballistic test technology, ballistic and archery in general and the laws of motion of flying objects. Academic papers on the latest research results on the laws of motion of flying objects.