Auto-tuning Parameter Choices in HPC Applications using Bayesian Optimization

Harshitha Menon, A. Bhatele, T. Gamblin
{"title":"Auto-tuning Parameter Choices in HPC Applications using Bayesian Optimization","authors":"Harshitha Menon, A. Bhatele, T. Gamblin","doi":"10.1109/IPDPS47924.2020.00090","DOIUrl":null,"url":null,"abstract":"High performance computing applications, runtimes, and platforms are becoming more configurable to enable applications to obtain better performance. As a result, users are increasingly presented with a multitude of options to configure application-specific as well as platform-level parameters. The combined effect of different parameter choices on application performance is difficult to predict, and an exhaustive evaluation of this combinatorial parameter space is practically infeasible. One approach to parameter selection is a user-guided exploration of a part of the space. However, such an ad hoc exploration of the parameter space can result in suboptimal choices. Therefore, an automatic approach that can efficiently explore the parameter space is needed. In this paper, we propose HiPerBOt, a Bayesian optimization based configuration selection framework to identify application and platform-level parameters that result in high performing configurations. We demonstrate the effectiveness of HiPerBOt in tuning parameters that include compiler flags, runtime settings, and application-level options for several parallel codes, including, Kripke, Hypre, LULESH, and OpenAtom.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"34 1","pages":"831-840"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

High performance computing applications, runtimes, and platforms are becoming more configurable to enable applications to obtain better performance. As a result, users are increasingly presented with a multitude of options to configure application-specific as well as platform-level parameters. The combined effect of different parameter choices on application performance is difficult to predict, and an exhaustive evaluation of this combinatorial parameter space is practically infeasible. One approach to parameter selection is a user-guided exploration of a part of the space. However, such an ad hoc exploration of the parameter space can result in suboptimal choices. Therefore, an automatic approach that can efficiently explore the parameter space is needed. In this paper, we propose HiPerBOt, a Bayesian optimization based configuration selection framework to identify application and platform-level parameters that result in high performing configurations. We demonstrate the effectiveness of HiPerBOt in tuning parameters that include compiler flags, runtime settings, and application-level options for several parallel codes, including, Kripke, Hypre, LULESH, and OpenAtom.
使用贝叶斯优化的HPC应用程序中的自动调优参数选择
高性能计算应用程序、运行时和平台正变得更加可配置,从而使应用程序能够获得更好的性能。因此,用户将有越来越多的选项来配置特定于应用程序和平台级别的参数。不同参数选择对应用性能的综合影响是难以预测的,对这种组合参数空间进行详尽的评估实际上是不可行的。参数选择的一种方法是用户引导对部分空间的探索。然而,这种对参数空间的特别探索可能会导致次优选择。因此,需要一种能够有效探索参数空间的自动方法。在本文中,我们提出了HiPerBOt,这是一个基于贝叶斯优化的配置选择框架,用于识别导致高性能配置的应用和平台级参数。我们演示了HiPerBOt在优化参数方面的有效性,这些参数包括编译器标志、运行时设置和多个并行代码(包括Kripke、Hypre、LULESH和OpenAtom)的应用程序级选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信