Flux Regulation for Torque-controlled Robotics Actuators

Mobin Mohammadnia, Navvab Kashiri, F. Braghin, N. Tsagarakis
{"title":"Flux Regulation for Torque-controlled Robotics Actuators","authors":"Mobin Mohammadnia, Navvab Kashiri, F. Braghin, N. Tsagarakis","doi":"10.1109/ICAR46387.2019.8981613","DOIUrl":null,"url":null,"abstract":"Upon the employment of robots in applications beyond traditional industries, the need for development of torque-controlled actuators has become more evident. To exploit the full capacity of torque/motion actuators, it is essential to regulate the motor flux in demand. Despite many studies in this area, major research in flux control has been dedicated to speed control. This work targets to present a novel and robust field weakening strategy for surface mounted permanent magnet motors (SPMSMs) when only a torque reference is given so that the motor velocity can adapt to operating conditions. The concept of proposed approach is elaborated and described qualitatively and mathematically. This work analyses the robustness of proposed approach to variation in motor parameters, and compares it with the performance of another approach in simulation and experimental results.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"15 1","pages":"93-98"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Upon the employment of robots in applications beyond traditional industries, the need for development of torque-controlled actuators has become more evident. To exploit the full capacity of torque/motion actuators, it is essential to regulate the motor flux in demand. Despite many studies in this area, major research in flux control has been dedicated to speed control. This work targets to present a novel and robust field weakening strategy for surface mounted permanent magnet motors (SPMSMs) when only a torque reference is given so that the motor velocity can adapt to operating conditions. The concept of proposed approach is elaborated and described qualitatively and mathematically. This work analyses the robustness of proposed approach to variation in motor parameters, and compares it with the performance of another approach in simulation and experimental results.
转矩控制机器人执行器的磁链调节
随着机器人在传统行业之外的应用,对力矩控制执行器的开发需求变得更加明显。为了充分利用扭矩/运动执行器的能力,有必要根据需求调节电机磁链。尽管在这一领域有许多研究,但磁链控制的主要研究一直致力于速度控制。这项工作的目标是为表面贴装永磁电机(SPMSMs)提供一种新颖而强大的磁场减弱策略,当只有一个扭矩参考时,电机速度可以适应运行条件。对所提出的方法的概念进行了定性和数学的阐述和描述。本文分析了所提出的方法对电机参数变化的鲁棒性,并在仿真和实验结果中与另一种方法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信