Long rainbow arithmetic progressions

IF 0.4 Q4 MATHEMATICS, APPLIED
J. Balogh, William Linz, Leticia Mattos
{"title":"Long rainbow arithmetic progressions","authors":"J. Balogh, William Linz, Leticia Mattos","doi":"10.4310/joc.2021.v12.n3.a6","DOIUrl":null,"url":null,"abstract":"Define $T_k$ as the minimal $t\\in \\mathbb{N}$ for which there is a rainbow arithmetic progression of length $k$ in every equinumerous $t$-coloring of $[tn]$ for all $n\\in \\mathbb{N}$. Jungic, Licht (Fox), Mahdian, Nesetril and Radoicic proved that $\\lfloor{\\frac{k^2}{4}\\rfloor}\\le T_k$. We almost close the gap between the upper and lower bounds by proving that $T_k \\le k^2e^{(\\ln\\ln k)^2(1+o(1))}$. Conlon, Fox and Sudakov have independently shown a stronger statement that $T_k=O(k^2\\log k)$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n3.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Define $T_k$ as the minimal $t\in \mathbb{N}$ for which there is a rainbow arithmetic progression of length $k$ in every equinumerous $t$-coloring of $[tn]$ for all $n\in \mathbb{N}$. Jungic, Licht (Fox), Mahdian, Nesetril and Radoicic proved that $\lfloor{\frac{k^2}{4}\rfloor}\le T_k$. We almost close the gap between the upper and lower bounds by proving that $T_k \le k^2e^{(\ln\ln k)^2(1+o(1))}$. Conlon, Fox and Sudakov have independently shown a stronger statement that $T_k=O(k^2\log k)$.
长彩虹数列
定义$T_k$为最小的$t\in \mathbb{N}$,它在每个等数$t$中都有一个长度为$k$的彩虹等差数列-对所有$n\in \mathbb{N}$着色$[tn]$。Jungic, light (Fox), Mahdian, Nesetril和Radoicic证明了$\lfloor{\frac{k^2}{4}\rfloor}\le T_k$。通过证明$T_k \le k^2e^{(\ln\ln k)^2(1+o(1))}$我们几乎消除了上界和下界之间的差距。康伦、福克斯和苏达科夫各自发表了更有力的声明,$T_k=O(k^2\log k)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信