pdynmc: A Package for Estimating Linear Dynamic Panel Data Models Based on Nonlinear Moment Conditions

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-035
Markus Fritsch, Adrian Yu Pua Andrew, Joachim Schnurbus
{"title":"pdynmc: A Package for Estimating Linear Dynamic Panel Data Models Based on Nonlinear Moment Conditions","authors":"Markus Fritsch, Adrian Yu Pua Andrew, Joachim Schnurbus","doi":"10.32614/rj-2021-035","DOIUrl":null,"url":null,"abstract":"This paper introduces pdynmc , an R package that provides users sufficient flexibility and precise control over the estimation and inference in linear dynamic panel data models. The package primarily allows for the inclusion of nonlinear moment conditions and the use of iterated GMM; additionally, visualizations for data structure and estimation results are provided. The current implementation reflects recent developments in literature, uses sensible argument defaults, and aligns commercial and noncommercial estimation commands. Since the understanding of the model assumptions is vital for setting up plausible estimation routines, we provide a broad introduction of linear dynamic panel data models directed towards practitioners before concisely describing the functionality available in pdynmc regarding instrument type, covariate type, estimation methodology, and general configuration. We then demonstrate the functionality by revisiting the popular firm-level dataset of Arellano and Bond (1991). ,","PeriodicalId":20974,"journal":{"name":"R J.","volume":"16 1","pages":"218"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper introduces pdynmc , an R package that provides users sufficient flexibility and precise control over the estimation and inference in linear dynamic panel data models. The package primarily allows for the inclusion of nonlinear moment conditions and the use of iterated GMM; additionally, visualizations for data structure and estimation results are provided. The current implementation reflects recent developments in literature, uses sensible argument defaults, and aligns commercial and noncommercial estimation commands. Since the understanding of the model assumptions is vital for setting up plausible estimation routines, we provide a broad introduction of linear dynamic panel data models directed towards practitioners before concisely describing the functionality available in pdynmc regarding instrument type, covariate type, estimation methodology, and general configuration. We then demonstrate the functionality by revisiting the popular firm-level dataset of Arellano and Bond (1991). ,
pdynmc:一个基于非线性力矩条件的线性动态面板数据模型估计包
本文介绍了一个R包pdynmc,它为用户提供了足够的灵活性和对线性动态面板数据模型的估计和推断的精确控制。该包主要允许包含非线性力矩条件和使用迭代GMM;此外,还提供了数据结构和估计结果的可视化。当前的实现反映了文献中的最新进展,使用了合理的参数默认值,并使商业和非商业评估命令保持一致。由于对模型假设的理解对于建立合理的估计例程至关重要,因此我们在简要描述pdynmc中关于仪器类型、协变量类型、估计方法和一般配置的可用功能之前,针对从业者提供了线性动态面板数据模型的广泛介绍。然后,我们通过重新访问阿雷拉诺和邦德(1991)的流行公司层面数据集来展示其功能。,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信