A 46.1 fps Global Matching Optical Flow Estimation Processor for Action Recognition in Mobile Devices

Juhyoung Lee, Changhyeon Kim, Sungpill Choi, Dongjoo Shin, Sanghoon Kang, H. Yoo
{"title":"A 46.1 fps Global Matching Optical Flow Estimation Processor for Action Recognition in Mobile Devices","authors":"Juhyoung Lee, Changhyeon Kim, Sungpill Choi, Dongjoo Shin, Sanghoon Kang, H. Yoo","doi":"10.1109/ISCAS.2018.8351177","DOIUrl":null,"url":null,"abstract":"A real-time global matching optical flow estimation (OFE) processor is proposed for action recognition in mobile devices. The global OFE requires a large number of external memory accesses (EMAs) and matrix computations, thus it is incompatible on mobile devices with real-time constraints. For real-time OFE on mobile devices, this paper proposes two key features, both of which to reduce the required memory bandwidth and a number of computations: 1) Tile-based hierarchical OFE enables intermediate data to be processed within 328 KB on-chip memory without external memory access. 2) Background skipping eliminates redundant matrix computation for zero optical flow region. Therefore, the proposed features reduce external memory bandwidth and computation by 99.7 % and 50.7 %, respectively. The proposed 4 mm2 OFE processor is implemented in 65 nm CMOS technology, and it achieves real-time OFE of 46.1 frames-per-second (fps) throughput for an image resolution of QVGA (320×240) and the resulting optical flow can be successfully used for action recognition.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A real-time global matching optical flow estimation (OFE) processor is proposed for action recognition in mobile devices. The global OFE requires a large number of external memory accesses (EMAs) and matrix computations, thus it is incompatible on mobile devices with real-time constraints. For real-time OFE on mobile devices, this paper proposes two key features, both of which to reduce the required memory bandwidth and a number of computations: 1) Tile-based hierarchical OFE enables intermediate data to be processed within 328 KB on-chip memory without external memory access. 2) Background skipping eliminates redundant matrix computation for zero optical flow region. Therefore, the proposed features reduce external memory bandwidth and computation by 99.7 % and 50.7 %, respectively. The proposed 4 mm2 OFE processor is implemented in 65 nm CMOS technology, and it achieves real-time OFE of 46.1 frames-per-second (fps) throughput for an image resolution of QVGA (320×240) and the resulting optical flow can be successfully used for action recognition.
用于移动设备动作识别的46.1 fps全局匹配光流估计处理器
提出了一种用于移动设备动作识别的实时全局匹配光流估计(OFE)处理器。全局OFE需要大量的外部存储器访问(ema)和矩阵计算,因此在具有实时性限制的移动设备上不兼容。对于移动设备上的实时OFE,本文提出了两个关键特性,这两个特性都可以减少所需的内存带宽和计算量:1)基于tile的分层OFE可以在328 KB的片上内存中处理中间数据,而无需外部存储器访问。2)背景跳变消除了零光流区域的冗余矩阵计算。因此,所提出的特性可将外部内存带宽和计算量分别减少99.7%和50.7%。所提出的4 mm2 OFE处理器采用65 nm CMOS技术实现,在QVGA (320×240)图像分辨率下实现了46.1帧/秒(fps)的实时OFE吞吐量,所产生的光流可成功用于动作识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信