{"title":"Barberpole tempo illusions","authors":"Daniele Ghisi","doi":"10.1080/17459737.2021.2001699","DOIUrl":null,"url":null,"abstract":"“Barberpole” tempo illusions are a family of auditory illusions based on the synchronization of faded rhythmic streams playing at different rates, often manufacturing experiences of seemingly eternal acceleration or deceleration. The forefather of all such illusions, based on layers whose rates are powers of two apart (“octaves”), was studied by Jean-Claude Risset in the late seventies and is now known as Risset rhythm. This article provides a mathematical framework for barberpole tempo illusions, generalizing Risset rhythms for arbitrary numbers of subdivisions, non-integer proportions, arbitrary rate modulation, and increasingly accelerating tempi. Furthermore, this article describes a new illusion of eternal rallentando/accelerando based on the full harmonic spectrum of rates. This construction shows that Risset rhythms are related to barberpole variable-rate polyrhythms. A notable application of the study of divisional structures that barberpole illusions underpin is the construction of bistable auditory figures (accelerating or decelerating depending on the stream being focused).","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.2001699","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
“Barberpole” tempo illusions are a family of auditory illusions based on the synchronization of faded rhythmic streams playing at different rates, often manufacturing experiences of seemingly eternal acceleration or deceleration. The forefather of all such illusions, based on layers whose rates are powers of two apart (“octaves”), was studied by Jean-Claude Risset in the late seventies and is now known as Risset rhythm. This article provides a mathematical framework for barberpole tempo illusions, generalizing Risset rhythms for arbitrary numbers of subdivisions, non-integer proportions, arbitrary rate modulation, and increasingly accelerating tempi. Furthermore, this article describes a new illusion of eternal rallentando/accelerando based on the full harmonic spectrum of rates. This construction shows that Risset rhythms are related to barberpole variable-rate polyrhythms. A notable application of the study of divisional structures that barberpole illusions underpin is the construction of bistable auditory figures (accelerating or decelerating depending on the stream being focused).
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.