Computing Minimal Presentations and Bigraded Betti Numbers of 2-Parameter Persistent Homology

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
M. Lesnick, Matthew L. Wright
{"title":"Computing Minimal Presentations and Bigraded Betti Numbers of 2-Parameter Persistent Homology","authors":"M. Lesnick, Matthew L. Wright","doi":"10.1137/20m1388425","DOIUrl":null,"url":null,"abstract":"Motivated by applications to topological data analysis, we give an efficient algorithm for computing a (minimal) presentation of a bigraded K [ x, y ]-module M , where K is a field. The algorithm takes as input a short chain complex of free modules X f −→ Y g −→ Z such that M ∼ = ker g/ im f . It runs in time O ( | X | 3 + | Y | 3 + | Z | 3 ) and requires O ( | X | 2 + | Y | 2 + | Z | 2 ) memory, where | · | denotes the rank. Given the presentation computed by our algorithm, the bigraded Betti numbers of M are readily computed. Our approach is based on a simple matrix reduction algorithm, slight variants of which compute kernels of morphisms between free modules, minimal generating sets, and Gr¨obner bases. Our algorithm for computing minimal presentations has been implemented in RIVET, a software tool for the visualization and analysis of two-parameter persistent homology. In experiments on topological data analysis problems, our implementation outperforms the standard computational commutative algebra packages Singular and Macaulay2 by a wide margin.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1388425","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 43

Abstract

Motivated by applications to topological data analysis, we give an efficient algorithm for computing a (minimal) presentation of a bigraded K [ x, y ]-module M , where K is a field. The algorithm takes as input a short chain complex of free modules X f −→ Y g −→ Z such that M ∼ = ker g/ im f . It runs in time O ( | X | 3 + | Y | 3 + | Z | 3 ) and requires O ( | X | 2 + | Y | 2 + | Z | 2 ) memory, where | · | denotes the rank. Given the presentation computed by our algorithm, the bigraded Betti numbers of M are readily computed. Our approach is based on a simple matrix reduction algorithm, slight variants of which compute kernels of morphisms between free modules, minimal generating sets, and Gr¨obner bases. Our algorithm for computing minimal presentations has been implemented in RIVET, a software tool for the visualization and analysis of two-parameter persistent homology. In experiments on topological data analysis problems, our implementation outperforms the standard computational commutative algebra packages Singular and Macaulay2 by a wide margin.
计算2参数持久同调的最小表示和增大的Betti数
受拓扑数据分析应用的启发,我们给出了一种有效的算法来计算K [x, y]-模块M的(最小)表示,其中K是一个字段。该算法以自由模X f−→Y g−→Z的短链复合体作为输入,使得M ~ = ker g/ im f。它的运行时间为O (| X | 3 + | Y | 3 + | Z | 3),并且需要O (| X | 2 + | Y | 2 + | Z | 2)内存,其中|·|表示rank。给出了该算法计算的表示形式,可以很容易地计算出M的分级贝蒂数。我们的方法是基于一个简单的矩阵约简算法,它可以计算自由模块、最小生成集和Gr¨obner基之间的态射核。我们计算最小表示的算法已经在RIVET中实现,RIVET是一个用于可视化和分析双参数持久同源的软件工具。在拓扑数据分析问题的实验中,我们的实现大大优于标准的计算交换代数包Singular和Macaulay2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信