Sahel Abdinia, M. Benwadih, R. Coppard, S. Jacob, G. Maiellaro, G. Palmisano, M. Rizzo, A. Scuderi, F. Tramontana, A. Roermund, E. Cantatore
{"title":"A 4b ADC manufactured in a fully-printed organic complementary technology including resistors","authors":"Sahel Abdinia, M. Benwadih, R. Coppard, S. Jacob, G. Maiellaro, G. Palmisano, M. Rizzo, A. Scuderi, F. Tramontana, A. Roermund, E. Cantatore","doi":"10.1109/ISSCC.2013.6487657","DOIUrl":null,"url":null,"abstract":"Organic transistors (OTFTs) can be printed on thin plastic substrates to obtain mechanically flexible large-area electronics with high throughput. Examples of applications include sensor-augmented RFIDs fabricated on the packaging of retail items and smart surfaces integrating sensors or actuators. Printed OTFTs have been used to design circuits [1-4], however, these implementations have been mainly limited to digital circuits or large-area switch matrices. A major challenge in the design of printed circuits is the relatively high variability in the characteristics of the OTFTs, which is caused by the low degree of spatial correlation typical of printing processes. A relatively high rate of hard faults is also typical in printed electronics (at the state of the art, yield is acceptable only for a circuit complexity of ~100 transistors).","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"os-7 1","pages":"106-107"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
Organic transistors (OTFTs) can be printed on thin plastic substrates to obtain mechanically flexible large-area electronics with high throughput. Examples of applications include sensor-augmented RFIDs fabricated on the packaging of retail items and smart surfaces integrating sensors or actuators. Printed OTFTs have been used to design circuits [1-4], however, these implementations have been mainly limited to digital circuits or large-area switch matrices. A major challenge in the design of printed circuits is the relatively high variability in the characteristics of the OTFTs, which is caused by the low degree of spatial correlation typical of printing processes. A relatively high rate of hard faults is also typical in printed electronics (at the state of the art, yield is acceptable only for a circuit complexity of ~100 transistors).