Uniform exponential stability in the sense of Hyers and Ulam for periodic time varying linear systems

Bakht Zada
{"title":"Uniform exponential stability in the sense of Hyers and Ulam for periodic time varying linear systems","authors":"Bakht Zada","doi":"10.7153/DEA-2018-10-15","DOIUrl":null,"url":null,"abstract":"We prove that the uniform exponential stability of time depended p -periodic system Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ Cn is equivalent to its Hyers–Ulam stability. As a tool, we consider the exact solution of the Cauchy problem { Θ̇(t) = Π(t)Θ(t)+ eiαtζ (t), t ∈ R+ Θ(0) = Θ0 as the approximate solution of Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t)∈ Cn , where α is any real number, ζ (t) with ζ (0) = 0 , is a p -periodic bounded function on the Banach space S (R+,C) . More precisely we prove that the system Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ Cn is Hyers–Ulam stable if and only if it is exponentially stable. We argue that Hyers-Ulam stability concept is quite significant in realistic problems in numerical analysis and economics.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"17 1","pages":"227-234"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2018-10-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We prove that the uniform exponential stability of time depended p -periodic system Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ Cn is equivalent to its Hyers–Ulam stability. As a tool, we consider the exact solution of the Cauchy problem { Θ̇(t) = Π(t)Θ(t)+ eiαtζ (t), t ∈ R+ Θ(0) = Θ0 as the approximate solution of Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t)∈ Cn , where α is any real number, ζ (t) with ζ (0) = 0 , is a p -periodic bounded function on the Banach space S (R+,C) . More precisely we prove that the system Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ Cn is Hyers–Ulam stable if and only if it is exponentially stable. We argue that Hyers-Ulam stability concept is quite significant in realistic problems in numerical analysis and economics.
周期时变线性系统Hyers和Ulam意义上的一致指数稳定性
证明了时间依赖p周期系统Ψ(t) = Π(t)Ψ(t), t∈R+, Ψ(t)∈Cn的均匀指数稳定性等价于它的Hyers-Ulam稳定性。作为一种工具,我们认为柯西问题的精确解{Θ̇(t) =Π(t)Θt (t) + eiαζ(t) t∈R +Θ(0)=Θ0的近似解Ψ̇(t) =Π(t)Ψ(t) t∈R +Ψ(t)∈Cn,α任意实数,ζ(t)和ζ(0)= 0,p是一个周期性的巴拿赫空间上的有界函数S (R + C)。更准确地说,我们证明了系统Ψ(t) = Π(t)Ψ(t), t∈R+, Ψ(t)∈Cn是Hyers-Ulam稳定的当且仅当它是指数稳定的。我们认为Hyers-Ulam稳定性概念在数值分析和经济学的现实问题中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信