PE-DeepNet: A deep neural network model for pulmonary embolism detection

Damian Lynch , Suriya M
{"title":"PE-DeepNet: A deep neural network model for pulmonary embolism detection","authors":"Damian Lynch ,&nbsp;Suriya M","doi":"10.1016/j.ijin.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning in medical image processing has shown to be a useful way for discovering patterns in both poorly labelled and unlabeled datasets. Venous thromboembolism, which includes deep vein thrombosis and pulmonary embolism, is a major cause of death in patients and requires quick detection by specialists. Using an artificial neural network, the suggested study was carried out to aid doctors in identifying and forecasting the risk level of pulmonary embolism in patients. This research presents a hybrid deep learning convolutional neural network model called PE-DeepNet (Pulmonary Embolism detection using Deep neural Network) to perform quick and accurate pulmonary embolism detection. The experiment uses a case study from the standard RSNA STR Pulmonary Embolism Chest CT scan image dataset. The proposed work results in an accuracy of 94.2%, an improvement over existing CNN models with minor trainable parameters.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"3 ","pages":"Pages 176-180"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603022000185/pdfft?md5=fe8baf48f3fa5865d5ca0cb0c3b749a2&pid=1-s2.0-S2666603022000185-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603022000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Machine learning in medical image processing has shown to be a useful way for discovering patterns in both poorly labelled and unlabeled datasets. Venous thromboembolism, which includes deep vein thrombosis and pulmonary embolism, is a major cause of death in patients and requires quick detection by specialists. Using an artificial neural network, the suggested study was carried out to aid doctors in identifying and forecasting the risk level of pulmonary embolism in patients. This research presents a hybrid deep learning convolutional neural network model called PE-DeepNet (Pulmonary Embolism detection using Deep neural Network) to perform quick and accurate pulmonary embolism detection. The experiment uses a case study from the standard RSNA STR Pulmonary Embolism Chest CT scan image dataset. The proposed work results in an accuracy of 94.2%, an improvement over existing CNN models with minor trainable parameters.

PE-DeepNet:用于肺栓塞检测的深度神经网络模型
医学图像处理中的机器学习已被证明是在标记不良和未标记数据集中发现模式的有用方法。静脉血栓栓塞,包括深静脉血栓和肺栓塞,是患者死亡的主要原因,需要专家快速检测。该研究利用人工神经网络,帮助医生识别和预测患者肺栓塞的风险水平。本研究提出了一种名为PE-DeepNet (Pulmonary Embolism detection using deep neural network)的混合深度学习卷积神经网络模型,用于快速准确的肺栓塞检测。该实验使用了标准RSNA STR肺栓塞胸部CT扫描图像数据集的案例研究。提出的工作结果精度为94.2%,比现有的具有少量可训练参数的CNN模型有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信