{"title":"SciQL: bridging the gap between science and relational DBMS","authors":"Y. Zhang, M. Kersten, M. Ivanova, N. Nes","doi":"10.1145/2076623.2076639","DOIUrl":null,"url":null,"abstract":"Scientific discoveries increasingly rely on the ability to efficiently grind massive amounts of experimental data using database technologies. To bridge the gap between the needs of the Data-Intensive Research fields and the current DBMS technologies, we propose SciQL (pronounced as 'cycle'), the first SQL-based query language for scientific applications with both tables and arrays as first class citizens. It provides a seamless symbiosis of array-, set- and sequence-interpretations. A key innovation is the extension of value-based grouping of SQL:2003 with structural grouping, i.e., fixed-sized and unbounded groups based on explicit relationships between elements positions. This leads to a generalisation of window-based query processing with wide applicability in science domains. This paper describes the main language features of SciQL and illustrates it using time-series concepts.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"6 1","pages":"124-133"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81
Abstract
Scientific discoveries increasingly rely on the ability to efficiently grind massive amounts of experimental data using database technologies. To bridge the gap between the needs of the Data-Intensive Research fields and the current DBMS technologies, we propose SciQL (pronounced as 'cycle'), the first SQL-based query language for scientific applications with both tables and arrays as first class citizens. It provides a seamless symbiosis of array-, set- and sequence-interpretations. A key innovation is the extension of value-based grouping of SQL:2003 with structural grouping, i.e., fixed-sized and unbounded groups based on explicit relationships between elements positions. This leads to a generalisation of window-based query processing with wide applicability in science domains. This paper describes the main language features of SciQL and illustrates it using time-series concepts.