{"title":"Multivariate mapping for experienced users: comparing extrinsic and intrinsic maps with univariate maps","authors":"J. Korycka-Skorupa, I. Gołębiowska","doi":"10.2478/mgrsd-2020-0068","DOIUrl":null,"url":null,"abstract":"Abstract Multivariate mapping is a technique in which multivariate data are encoded into a single map. A variety of design solutions for multivariate mapping refers to the number of phenomena mapped, the map type, and the visual variables applied. Unlike other authors who have mainly evaluated bivariate maps, in our empirical study we compared three solutions when mapping four variables: two types of multivariate maps (intrinsic and extrinsic) and a simple univariate alternative (serving as a baseline). We analysed usability performance metrics (answer time, answer accuracy, subjective rating of task difficulty) and eye-tracking data. The results suggested that experts used all the tested maps with similar results for answer time and accuracy, even when using four-variable intrinsic maps, which is considered to be a challenging solution. However, eye-tracking data provided more nuances in relation to the difference in cognitive effort evoked by the tested maps across task types.","PeriodicalId":44469,"journal":{"name":"Miscellanea Geographica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miscellanea Geographica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mgrsd-2020-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Multivariate mapping is a technique in which multivariate data are encoded into a single map. A variety of design solutions for multivariate mapping refers to the number of phenomena mapped, the map type, and the visual variables applied. Unlike other authors who have mainly evaluated bivariate maps, in our empirical study we compared three solutions when mapping four variables: two types of multivariate maps (intrinsic and extrinsic) and a simple univariate alternative (serving as a baseline). We analysed usability performance metrics (answer time, answer accuracy, subjective rating of task difficulty) and eye-tracking data. The results suggested that experts used all the tested maps with similar results for answer time and accuracy, even when using four-variable intrinsic maps, which is considered to be a challenging solution. However, eye-tracking data provided more nuances in relation to the difference in cognitive effort evoked by the tested maps across task types.