Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface

Yongwoo Lee, Injoong Chang, Juyeong Nam, H. Bae, H. Cho
{"title":"Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface","authors":"Yongwoo Lee, Injoong Chang, Juyeong Nam, H. Bae, H. Cho","doi":"10.9766/kimst.2022.25.3.251","DOIUrl":null,"url":null,"abstract":"Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2022.25.3.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.
天线罩表面金属纳米涂层红外隐身性能分析
飞机红外隐身技术是利用内部散热片、低发射率材料或超材料,通过控制飞机表面温度和发射率来降低红外信号的技术。然而,在飞机的一个部分,这种技术的使用是有限的,那就是天线罩。特别是天线罩对于特定的射频要有透射率,因此发射率控制面等常见的隐身技术不能应用于天线罩表面。在本研究中,我们开发了一种适用于雷达罩表面的红外隐身金属纳米涂层。我们设计了狭缝型模式,用于x波段的频率选择传输,并控制金属纳米涂层的厚度,用于控制长波红外发射率。结果表明,雷达罩红外隐身表面的x波段透过率为93.2%,红外发射率随纳米涂层厚度的变化范围为0.17 ~ 0.57。通过数值模拟分析了雷达罩的红外特征,与聚氨酯表面相比,雷达罩的对比辐射强度降低了97.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信