AN OPTIMIZATION APPROACH FOR COMPUTING A SPARSE MONO-CYCLIC POSITIVE REPRESENTATION

IF 0.3 Q4 MATHEMATICS, APPLIED
Kyungsup Kim
{"title":"AN OPTIMIZATION APPROACH FOR COMPUTING A SPARSE MONO-CYCLIC POSITIVE REPRESENTATION","authors":"Kyungsup Kim","doi":"10.12941/JKSIAM.2016.20.225","DOIUrl":null,"url":null,"abstract":"The phase-type representation is strongly connected with the positive realization in positive system. We attempt to transform phase-type representation into sparse mono-cyclic positive representation with as low order as possible. Because equivalent positive representations of a given phase-type distribution are non-unique, it is important to find a simple sparse positive representation with lower order that leads to more effective use in applications. A Hypo-Feedback-Coxian Block (HFCB) representation is a good candidate for a simple sparse representation. Our objective is to find an HFCB representation with possibly lower order, including all the eigenvalues of the original generator. We introduce an efficient nonlinear optimization method for computing an HFCB representation from a given phase-type representation. We discuss numerical problems encountered when finding efficiently a stable solution of the nonlinear constrained optimization problem. Numerical simulations are performed to show the effectiveness of the proposed algorithm.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"29 1","pages":"225-242"},"PeriodicalIF":0.3000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2016.20.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The phase-type representation is strongly connected with the positive realization in positive system. We attempt to transform phase-type representation into sparse mono-cyclic positive representation with as low order as possible. Because equivalent positive representations of a given phase-type distribution are non-unique, it is important to find a simple sparse positive representation with lower order that leads to more effective use in applications. A Hypo-Feedback-Coxian Block (HFCB) representation is a good candidate for a simple sparse representation. Our objective is to find an HFCB representation with possibly lower order, including all the eigenvalues of the original generator. We introduce an efficient nonlinear optimization method for computing an HFCB representation from a given phase-type representation. We discuss numerical problems encountered when finding efficiently a stable solution of the nonlinear constrained optimization problem. Numerical simulations are performed to show the effectiveness of the proposed algorithm.
计算稀疏单循环正表示的一种优化方法
在正系统中,相型表示与正实现密切相关。我们尝试将相型表示转换为尽可能低阶的稀疏单循环正表示。由于给定相位类型分布的等效正表示不是唯一的,因此找到一个简单的低阶稀疏正表示非常重要,这样可以在应用程序中更有效地使用它。次反馈余弦块(HFCB)表示是一种很好的简单稀疏表示。我们的目标是找到一个可能具有低阶的HFCB表示,包括原始发生器的所有特征值。我们介绍了一种有效的非线性优化方法,用于从给定的相型表示计算HFCB表示。讨论了有效求解非线性约束优化问题的稳定解时遇到的数值问题。通过数值仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信