On the cluster method in the theory of short-range order in alloys

V. Vaks, N. Zein, V. Kamyshenko
{"title":"On the cluster method in the theory of short-range order in alloys","authors":"V. Vaks, N. Zein, V. Kamyshenko","doi":"10.1088/0305-4608/18/8/005","DOIUrl":null,"url":null,"abstract":"The cluster field method (CFM) described earlier is applied to the calculation of the correlation function Kij=K(ri-rj) and short-range order parameters aij in alloys. The method generalises the previous approaches of Krivoglaz (1957) and Clapp and Moss (1966, 1968) to the case of realistic values of the interaction constants Vij, which are not small, as compared with the temperature T. The cluster expansions for the matrix elements Sij=(K-1)ij are presented, which converge rapidly at normal values of the 'virial' parameter c(1-c)fij where c is the mean site occupation number and fij=exp(-Vij/T)-1 is the Mayer function. The sum rule aij=1 is usually fulfilled in the CFM with good accuracy, unlike in the previous approximate methods. The method enables the authors to estimate quantitatively the interaction constants Vij from the diffuse scattering data. This is illustrated by using the data of Lefebvre et al. (1981) for Ni0.765Fe0.235. The results show that the conventional Clapp-Moss approximation underestimates Vij by 30-40%. Applications to interstitial alloys are illustrated by calculating Kij for the NbHx-type alloys.","PeriodicalId":16828,"journal":{"name":"Journal of Physics F: Metal Physics","volume":"12 1","pages":"1641-1661"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics F: Metal Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4608/18/8/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The cluster field method (CFM) described earlier is applied to the calculation of the correlation function Kij=K(ri-rj) and short-range order parameters aij in alloys. The method generalises the previous approaches of Krivoglaz (1957) and Clapp and Moss (1966, 1968) to the case of realistic values of the interaction constants Vij, which are not small, as compared with the temperature T. The cluster expansions for the matrix elements Sij=(K-1)ij are presented, which converge rapidly at normal values of the 'virial' parameter c(1-c)fij where c is the mean site occupation number and fij=exp(-Vij/T)-1 is the Mayer function. The sum rule aij=1 is usually fulfilled in the CFM with good accuracy, unlike in the previous approximate methods. The method enables the authors to estimate quantitatively the interaction constants Vij from the diffuse scattering data. This is illustrated by using the data of Lefebvre et al. (1981) for Ni0.765Fe0.235. The results show that the conventional Clapp-Moss approximation underestimates Vij by 30-40%. Applications to interstitial alloys are illustrated by calculating Kij for the NbHx-type alloys.
合金近程有序理论中的聚类方法
本文将前面描述的聚类场法(CFM)应用于合金中相关函数Kij=K(ri-rj)和近程阶参量aij的计算。该方法将Krivoglaz(1957)和Clapp和Moss(1966, 1968)的方法推广到与温度T相比,相互作用常数Vij的实际值并不小的情况下。给出了矩阵元素Sij=(K-1)ij的簇展开,它们在“virial”参数c(1-c)fij的正常值处迅速收敛,其中c是平均位置占用数,fij=exp(-Vij/T)-1是Mayer函数。与以往的近似方法不同,CFM通常满足和规则aij=1,且精度较高。该方法使作者能够从漫射散射数据中定量估计相互作用常数Vij。Lefebvre等人(1981)对Ni0.765Fe0.235的数据说明了这一点。结果表明,传统的Clapp-Moss近似将Vij低估了30-40%。通过计算nbhx型合金的Kij来说明在间隙合金中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信