Comments on the paper "A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann--Liouville boundary conditions, Ann. Univ. Craiova, Math. Comput. Sci. Ser., (2020), 88-110"

IF 0.5 Q3 MATHEMATICS
S. Hristova, A. Zada
{"title":"Comments on the paper \"A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann--Liouville boundary conditions, Ann. Univ. Craiova, Math. Comput. Sci. Ser., (2020), 88-110\"","authors":"S. Hristova, A. Zada","doi":"10.52846/ami.v48i1.1469","DOIUrl":null,"url":null,"abstract":"\"Caputo fractional differential equations with impulses are a very useful apparatus for adequate modeling of the dynamics of many rea world problems. It requires developments of good and consistent theoretical proofs and the results for various problems. In this note we point out and correct the statement of the boundary value problem with Riemann--Liouville fractional integral for impulsive Caputo fractional differential equation studied in the paper \"\" A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann--Liouville boundary conditions, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 47 (2020), 88-110.\"\"\"","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"Caputo fractional differential equations with impulses are a very useful apparatus for adequate modeling of the dynamics of many rea world problems. It requires developments of good and consistent theoretical proofs and the results for various problems. In this note we point out and correct the statement of the boundary value problem with Riemann--Liouville fractional integral for impulsive Caputo fractional differential equation studied in the paper "" A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann--Liouville boundary conditions, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 47 (2020), 88-110."""
a . Zada, B. Dayyan,一类具有瞬时脉冲和Riemann—Liouville边界条件的隐式分数阶微分方程的稳定性分析。克拉约瓦大学,数学专业。第一版。科学。爵士。,(2020), 88-110”
“带脉冲的卡普托分数阶微分方程是一种非常有用的工具,可以充分模拟许多现实世界问题的动力学。它要求对各种问题发展出良好和一致的理论证明和结果。a . Zada, B. Dayyan,一类具有瞬时脉冲和Riemann- Liouville边界条件的隐式分数阶微分方程的稳定性分析,在本文中,我们指出并修正了论文中研究的脉冲Caputo分数阶微分方程的Riemann- Liouville分数积分边值问题的表述。克拉约瓦大学,数学专业。第一版。科学。爵士。, 47(2020), 88-110。”""
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信