THE CORRECTING FUNCTIONS METHOD FOR SOLVING A BOUNDARY VALUE PROBLEM FOR THE AMBIPOLAR DIFFUSION EQUATION IN A DOMAIN WITH A CURVILINEAR BOUNDARIES

IF 0.1
I. P. Moroz
{"title":"THE CORRECTING FUNCTIONS METHOD FOR SOLVING A BOUNDARY VALUE PROBLEM FOR THE AMBIPOLAR DIFFUSION EQUATION IN A DOMAIN WITH A CURVILINEAR BOUNDARIES","authors":"I. P. Moroz","doi":"10.17721/2706-9699.2022.2.11","DOIUrl":null,"url":null,"abstract":"An approach for the ambipolar diffusion equation boundary value problem solving, which is posed in a two-dimensional domain with oscillating boundaries, is proposed. The construction of the solution of the model problem is based on the corresponding problem for a certain internal canonical majorant domain and the methodology for constructing the so-called corrective corrections based on the use of the perturbation theory elements. A feature of this problem is that it is not the problem equation or boundary conditions that are perturbed, but the region. And this leads to the construction of a fundamentally new solution structure.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"67 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An approach for the ambipolar diffusion equation boundary value problem solving, which is posed in a two-dimensional domain with oscillating boundaries, is proposed. The construction of the solution of the model problem is based on the corresponding problem for a certain internal canonical majorant domain and the methodology for constructing the so-called corrective corrections based on the use of the perturbation theory elements. A feature of this problem is that it is not the problem equation or boundary conditions that are perturbed, but the region. And this leads to the construction of a fundamentally new solution structure.
曲线边界域上双极扩散方程边值问题的修正函数法
提出了一种二维振动边界域上双极扩散方程边值问题的求解方法。模型问题的解的构造是基于某一内正则主域的相应问题和基于使用微扰理论元构造所谓修正修正的方法。这个问题的一个特点是,它不是问题方程或边界条件被扰动,而是区域被扰动。这导致了一个全新的解决方案结构的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信