Symmetry transformations of extremals and higher conserved quantities: Invariant Yang–Mills connections

Luca Accornero, M. Palese
{"title":"Symmetry transformations of extremals and higher conserved quantities: Invariant Yang–Mills connections","authors":"Luca Accornero, M. Palese","doi":"10.1063/5.0038533","DOIUrl":null,"url":null,"abstract":"We characterize symmetry transformations of Lagrangian extremals generating `on shell' conservation laws. We relate symmetry transformations of extremals to Jacobi fields and study symmetries of higher variations by proving that a pair given by a symmetry of the $l$-th variation of a Lagrangian and by a Jacobi field of the $s$-th variation of the same Lagrangian (with $s<l$) is associated with an `of shell' conserved current. The conserved current associated with two symmetry transformations is constructed and, as a case of study, its expression for invariant Yang--Mills connections on Minkowski space-times is obtained.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0038533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We characterize symmetry transformations of Lagrangian extremals generating `on shell' conservation laws. We relate symmetry transformations of extremals to Jacobi fields and study symmetries of higher variations by proving that a pair given by a symmetry of the $l$-th variation of a Lagrangian and by a Jacobi field of the $s$-th variation of the same Lagrangian (with $s
极值和高守恒量的对称变换:不变Yang-Mills联系
我们刻画了拉格朗日极值的对称变换,生成了“壳上”守恒定律。我们将极值的对称变换与Jacobi场联系起来,并通过证明由拉格朗日量的第1次变化的对称和相同拉格朗日量的第5次变化的Jacobi场给出的一对(与$s
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信