RRAM-based Spiking Nonvolatile Computing-In-Memory Processing Engine with Precision-Configurable In Situ Nonlinear Activation

Bonan Yan, Qing Yang, Wei-Hao Chen, Kung-Tang Chang, Jian-Wei Su, Chien-Hua Hsu, Sih-Han Li, Heng-Yuan Lee, S. Sheu, M. Ho, Qing Wu, Meng-Fan Chang, Yiran Chen, Hai Helen Li
{"title":"RRAM-based Spiking Nonvolatile Computing-In-Memory Processing Engine with Precision-Configurable In Situ Nonlinear Activation","authors":"Bonan Yan, Qing Yang, Wei-Hao Chen, Kung-Tang Chang, Jian-Wei Su, Chien-Hua Hsu, Sih-Han Li, Heng-Yuan Lee, S. Sheu, M. Ho, Qing Wu, Meng-Fan Chang, Yiran Chen, Hai Helen Li","doi":"10.23919/VLSIT.2019.8776485","DOIUrl":null,"url":null,"abstract":"This work presents a hybrid CMOS-RRAM integration of spiking nonvolatile computing-in-memory (nvCIM) processing engine (PE) that includes a 64Kb RRAM macro and a novel in situ nonlinear activation (ISNA) module. We integrate the computing controller and nonlinear activation function on-chip to compute convolutional or fully-connected neural network. ISNA merges A/D conversion and activation computation by leveraging its nonlinear working region. This eliminates the need for additional circuits to realize nonlinearity and reduces area by 43.7x w.r.t. the ADC scheme. The activation precision of ISNA can be configured from 1 to 8 bits to balance throughput, accuracy and power efficiency. The measurement of 4-layer LeNet shows such optimization improves 23.1% of computing speed via compromising a 2.5% relative accuracy drop. The proposed nvCIM PE achieves 16.9 TOPS/W power efficiency and a maximum spike frequency of 99.24 MHz.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"35 1","pages":"T86-T87"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

This work presents a hybrid CMOS-RRAM integration of spiking nonvolatile computing-in-memory (nvCIM) processing engine (PE) that includes a 64Kb RRAM macro and a novel in situ nonlinear activation (ISNA) module. We integrate the computing controller and nonlinear activation function on-chip to compute convolutional or fully-connected neural network. ISNA merges A/D conversion and activation computation by leveraging its nonlinear working region. This eliminates the need for additional circuits to realize nonlinearity and reduces area by 43.7x w.r.t. the ADC scheme. The activation precision of ISNA can be configured from 1 to 8 bits to balance throughput, accuracy and power efficiency. The measurement of 4-layer LeNet shows such optimization improves 23.1% of computing speed via compromising a 2.5% relative accuracy drop. The proposed nvCIM PE achieves 16.9 TOPS/W power efficiency and a maximum spike frequency of 99.24 MHz.
基于随机存储器的峰值非易失性内存计算处理引擎,具有精确可配置的原位非线性激活
这项工作提出了一种混合CMOS-RRAM集成的峰值非易失性内存计算(nvCIM)处理引擎(PE),其中包括一个64Kb的RRAM宏和一个新颖的原位非线性激活(ISNA)模块。我们在芯片上集成计算控制器和非线性激活函数来计算卷积或全连接神经网络。ISNA利用其非线性工作区域合并A/D转换和激活计算。这消除了额外电路来实现非线性的需要,并将ADC方案的面积减少了43.7倍的w.r.t.。ISNA的激活精度可配置为1 ~ 8位,以平衡吞吐量、精度和功率效率。对4层LeNet的测量表明,这种优化通过牺牲2.5%的相对精度下降,提高了23.1%的计算速度。所提出的nvCIM PE的功率效率为16.9 TOPS/W,最大尖峰频率为99.24 MHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信