A Cryo-CMOS Low-Power Semi-Autonomous Qubit State Controller in 14nm FinFET Technology

D. Frank, S. Chakraborty, K. Tien, Pat Rosno, T. Fox, M. Yeck, J. Glick, R. Robertazzi, R. Richetta, J. Bulzacchelli, Daniel Ramirez, Dereje Yilma, Andrew Davies, R. Joshi, Shawn D. Chambers, S. Lekuch, K. Inoue, D. Underwood, Dorothy Wisnieff, C. Baks, D. Bethune, John Timmerwilke, B. Johnson, Brian P. Gaucher, D. Friedman
{"title":"A Cryo-CMOS Low-Power Semi-Autonomous Qubit State Controller in 14nm FinFET Technology","authors":"D. Frank, S. Chakraborty, K. Tien, Pat Rosno, T. Fox, M. Yeck, J. Glick, R. Robertazzi, R. Richetta, J. Bulzacchelli, Daniel Ramirez, Dereje Yilma, Andrew Davies, R. Joshi, Shawn D. Chambers, S. Lekuch, K. Inoue, D. Underwood, Dorothy Wisnieff, C. Baks, D. Bethune, John Timmerwilke, B. Johnson, Brian P. Gaucher, D. Friedman","doi":"10.1109/ISSCC42614.2022.9731538","DOIUrl":null,"url":null,"abstract":"Error-corrected quantum computing is expected to require at least 105 to 106 physical qubits. Superconducting transmons, which are promising qubit candidates for scaled quantum computing systems, typically require individually tailored RF pulses in the 4-to-6 GHz range to manipulate their states, so scaling to 106 qubits presents an enormous challenge. Providing a control line for every qubit from room temperature (RT) to the 10mK environment does not appear to be viable for a 106 qubit system due to multiple factors, including RF loss, mechanical congestion, heat load, and connector unreliability. TDM cannot be used to reduce the number of control lines since all of the qubits may need to be activated at once (e.g., during quantum error correction (QEC) cycles). FDM has been proposed but is undesirable because extra tones can give rise to unwanted qubit excitations.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"14 1","pages":"360-362"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Error-corrected quantum computing is expected to require at least 105 to 106 physical qubits. Superconducting transmons, which are promising qubit candidates for scaled quantum computing systems, typically require individually tailored RF pulses in the 4-to-6 GHz range to manipulate their states, so scaling to 106 qubits presents an enormous challenge. Providing a control line for every qubit from room temperature (RT) to the 10mK environment does not appear to be viable for a 106 qubit system due to multiple factors, including RF loss, mechanical congestion, heat load, and connector unreliability. TDM cannot be used to reduce the number of control lines since all of the qubits may need to be activated at once (e.g., during quantum error correction (QEC) cycles). FDM has been proposed but is undesirable because extra tones can give rise to unwanted qubit excitations.
14nm FinFET技术中的Cryo-CMOS低功耗半自主量子比特状态控制器
纠错量子计算预计至少需要105到106个物理量子比特。超导传输器是规模化量子计算系统中很有前途的量子比特候选者,通常需要在4到6 GHz范围内单独定制RF脉冲来操纵它们的状态,因此扩展到106个量子比特是一个巨大的挑战。由于射频损耗、机械拥塞、热负荷和连接器不可靠性等多种因素,为从室温(RT)到10mK环境的每个量子位提供控制线对于106量子位系统似乎是不可行的。时分复用不能用于减少控制线的数量,因为所有的量子位可能需要一次激活(例如,在量子纠错(QEC)周期期间)。已经提出了FDM,但不希望,因为额外的音调会产生不必要的量子位激发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信