{"title":"A limit case in non-isotropic two-phase minimization problems driven by $p$-Laplacians","authors":"J. V. Silva, J. Rossi","doi":"10.4171/IFB/406","DOIUrl":null,"url":null,"abstract":"In this work we study a minimization problem with two-phases where in each phase region the problem is ruled by a quasi-linear elliptic operator of p−Laplacian type. The problem in its variational form is as follows: min v ∫ Ω∩{v>0} ( 1 p |∇v|p +λ p +(x)+ f+(x)v ) dx+ ∫ Ω∩{v≤0} ( 1 q |∇v|q +λ q −(x)+ f−(x)v ) dx . Here we minimize among all admissible functions v in an appropriate Sobolev space with a prescribed boundary datum v = g on ∂Ω. First, we show existence of a minimizer, prove some properties, and provide an example for non-uniqueness. Moreover, we analyze the limit case where p and q go to infinity, obtaining a limiting free boundary problem governed by the ∞−Laplacian operator. Consequently, Lipschitz regularity for any limiting solution is obtained. Finally, we establish some weak geometric properties for solutions.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"8 1","pages":"379-406"},"PeriodicalIF":1.2000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/406","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
In this work we study a minimization problem with two-phases where in each phase region the problem is ruled by a quasi-linear elliptic operator of p−Laplacian type. The problem in its variational form is as follows: min v ∫ Ω∩{v>0} ( 1 p |∇v|p +λ p +(x)+ f+(x)v ) dx+ ∫ Ω∩{v≤0} ( 1 q |∇v|q +λ q −(x)+ f−(x)v ) dx . Here we minimize among all admissible functions v in an appropriate Sobolev space with a prescribed boundary datum v = g on ∂Ω. First, we show existence of a minimizer, prove some properties, and provide an example for non-uniqueness. Moreover, we analyze the limit case where p and q go to infinity, obtaining a limiting free boundary problem governed by the ∞−Laplacian operator. Consequently, Lipschitz regularity for any limiting solution is obtained. Finally, we establish some weak geometric properties for solutions.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.