Automated Patent Classification Using Word Embedding

Mattyws F. Grawe, C. A. Martins, Andreia Gentil Bonfante
{"title":"Automated Patent Classification Using Word Embedding","authors":"Mattyws F. Grawe, C. A. Martins, Andreia Gentil Bonfante","doi":"10.1109/ICMLA.2017.0-127","DOIUrl":null,"url":null,"abstract":"Patent classification is the task of assign a special code to a patent, where the assigned code is used to group patents with similar subject into a same category. This paper presents a patent categorization method based on word embedding and long short term memory network to classify patents down to the subgroup IPC level. The experimental results indicate that our classification method achieve 63\\% accuracy at the subgroup level.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"29 1","pages":"408-411"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Patent classification is the task of assign a special code to a patent, where the assigned code is used to group patents with similar subject into a same category. This paper presents a patent categorization method based on word embedding and long short term memory network to classify patents down to the subgroup IPC level. The experimental results indicate that our classification method achieve 63\% accuracy at the subgroup level.
使用词嵌入的自动专利分类
专利分类是为专利分配特殊代码的任务,分配的代码用于将具有相似主题的专利分组到同一类别中。本文提出了一种基于词嵌入和长短期记忆网络的专利分类方法,将专利分类精确到子组IPC级别。实验结果表明,我们的分类方法在子组水平上达到了63%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信