A Parametric Sensitivity Analysis for the Solution of Extrema Evaluation Problems via a Dimensionality Reducing Approximation Method

Tülin Kaman, Metin Demiralp
{"title":"A Parametric Sensitivity Analysis for the Solution of Extrema Evaluation Problems via a Dimensionality Reducing Approximation Method","authors":"Tülin Kaman,&nbsp;Metin Demiralp","doi":"10.1002/anac.200310023","DOIUrl":null,"url":null,"abstract":"<p>This work aims to apply High Dimensional Model Representation (HDMR) to the sensitivity coefficient determination of the solutions of a multivariate extrema problem. The derivations are made for general functional structure and the illustrative applications are related to structures where the resulting extrema equations are matrix eigenvalue problems. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"260-269"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310023","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work aims to apply High Dimensional Model Representation (HDMR) to the sensitivity coefficient determination of the solutions of a multivariate extrema problem. The derivations are made for general functional structure and the illustrative applications are related to structures where the resulting extrema equations are matrix eigenvalue problems. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

用降维逼近法求解极值评价问题的参数灵敏度分析
本工作旨在将高维模型表示(HDMR)应用于多元极值问题解的灵敏度系数确定。对一般泛函结构进行了推导,并对其极值方程为矩阵特征值问题的结构进行了说明应用。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信