On the asymptotic behavior of the $q$-analog of Kostant's partition function

IF 0.4 Q4 MATHEMATICS, APPLIED
P. Harris, Margaret Rahmoeller, Lisa Schneider
{"title":"On the asymptotic behavior of the $q$-analog of Kostant's partition function","authors":"P. Harris, Margaret Rahmoeller, Lisa Schneider","doi":"10.4310/joc.2022.v13.n2.a1","DOIUrl":null,"url":null,"abstract":"Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\\mathfrak{g}$ as a sum of positive roots of $\\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\\to\\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"29 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\mathfrak{g}$ as a sum of positive roots of $\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\to\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.
关于Kostant配分函数的$q$-模拟的渐近性
Kostant的配分函数计算了将经典李代数$\mathfrak{g}$的权值表示为$\mathfrak{g}$的正根和的不同方法的个数。我们将这些表达式中的每一个称为权重的分解,我们的主要结果建立了在秩$r$的经典李代数的最高根的分解中正根数的(归一化)分布收敛于一个高斯分布$r\to\infty$。我们将这些结果推广到一个无限的权族,而不考虑李氏类型,为此我们建立了Kostant配分函数的$q$ -模拟的封闭公式,然后证明了当李氏代数的秩趋于无穷时,模拟分布也收敛于高斯分布。最后,对今后的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信