{"title":"On the asymptotic behavior of the $q$-analog of Kostant's partition function","authors":"P. Harris, Margaret Rahmoeller, Lisa Schneider","doi":"10.4310/joc.2022.v13.n2.a1","DOIUrl":null,"url":null,"abstract":"Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\\mathfrak{g}$ as a sum of positive roots of $\\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\\to\\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"29 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\mathfrak{g}$ as a sum of positive roots of $\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\to\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.