{"title":"The Noncommutative Geometry of the Landau Hamiltonian: Metric Aspects","authors":"G. Nittis, M. Sandoval","doi":"10.3842/sigma.2020.146","DOIUrl":null,"url":null,"abstract":"This work provides a first step towards the construction of a noncommutative geometry for the Quantum Hall Effect in the continuous. Taking inspiration from the ideas developed by Bellissard during the 80's we build a spectral triple for the $C^*$-algebra of continuous magnetic operators based on a Dirac operator with compact resolvent. The metric aspects of this spectral triple are studied, and an important piece of Bellissard's theory (the so-called first Connes' formula) is proved.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2020.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This work provides a first step towards the construction of a noncommutative geometry for the Quantum Hall Effect in the continuous. Taking inspiration from the ideas developed by Bellissard during the 80's we build a spectral triple for the $C^*$-algebra of continuous magnetic operators based on a Dirac operator with compact resolvent. The metric aspects of this spectral triple are studied, and an important piece of Bellissard's theory (the so-called first Connes' formula) is proved.