Euler’s Equations of Rigid Body: Its Control and Synchronization using Active Control and Recursive Backstepping methods.

Cornelius Ogab, B. Idowu, A. S. Ogungbe, E. Onori, O. Ometan, A. Ogwala
{"title":"Euler’s Equations of Rigid Body: Its Control and Synchronization using Active Control and Recursive Backstepping methods.","authors":"Cornelius Ogab, B. Idowu, A. S. Ogungbe, E. Onori, O. Ometan, A. Ogwala","doi":"10.36108/jrrslasu/8102/50(0112)","DOIUrl":null,"url":null,"abstract":"We present Euler’s Equation of Rigid Body, its control and synchronization using active control and recursive backstepping methods. Based on Lyapunov stability theory, control laws are derived to synchronize the chaotic system and also to control to a steady state as well as track to a desired function via recursive backstepping methods. Numerical simulation are shown to verify the results.","PeriodicalId":16955,"journal":{"name":"JOURNAL OF RESEARCH AND REVIEW IN SCIENCE","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF RESEARCH AND REVIEW IN SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36108/jrrslasu/8102/50(0112)","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present Euler’s Equation of Rigid Body, its control and synchronization using active control and recursive backstepping methods. Based on Lyapunov stability theory, control laws are derived to synchronize the chaotic system and also to control to a steady state as well as track to a desired function via recursive backstepping methods. Numerical simulation are shown to verify the results.
刚体欧拉方程:基于主动控制和递推反演法的控制与同步。
给出了刚体的欧拉方程,并利用主动控制和递推反演方法对其进行控制和同步。基于李雅普诺夫稳定性理论,导出了控制律,使混沌系统同步,并通过递推反推方法控制到稳态和跟踪到期望函数。通过数值模拟验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信