Parallel arithmetic expression evaluation on reconfigurable meshes

B. Pradeep , C. Siva Ram Murthy
{"title":"Parallel arithmetic expression evaluation on reconfigurable meshes","authors":"B. Pradeep ,&nbsp;C. Siva Ram Murthy","doi":"10.1016/0096-0551(94)90008-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we present an <em>O</em>(log <em>n</em>) time parallel algorithm for arithmetic expression evaluation, on an <em>n</em> × <em>n</em> processor array with reconfigurable bus system, where <em>n</em> is the sum of the number of operators and constants in the expression. The basic technique involved here is leaves-cutting (rake operation), as in the case of PRAM model algorithms available in the literature for this problem. The input to our algorithm is assumed to be the binary tree associated with a given expression (also known as expression tree with <em>n</em> number of nodes). Our algorithm is faster compared to the previous best time for expression evaluation on mesh connected computers which is <em>O</em>(√<em>n</em>).</p></div>","PeriodicalId":100315,"journal":{"name":"Computer Languages","volume":"20 4","pages":"Pages 267-277"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0096-0551(94)90008-6","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Languages","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0096055194900086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we present an O(log n) time parallel algorithm for arithmetic expression evaluation, on an n × n processor array with reconfigurable bus system, where n is the sum of the number of operators and constants in the expression. The basic technique involved here is leaves-cutting (rake operation), as in the case of PRAM model algorithms available in the literature for this problem. The input to our algorithm is assumed to be the binary tree associated with a given expression (also known as expression tree with n number of nodes). Our algorithm is faster compared to the previous best time for expression evaluation on mesh connected computers which is O(√n).

可重构网格的并行算法表达式求值
本文在具有可重构总线系统的n × n处理器阵列上,给出了一种O(log n)时间的算术表达式求值并行算法,其中n为表达式中算子数和常数数之和。这里涉及的基本技术是叶片切割(耙操作),就像文献中可用的PRAM模型算法一样。我们算法的输入假定是与给定表达式(也称为具有n个节点的表达式树)相关联的二叉树。我们的算法比之前在网格连接的计算机上计算表达式的最佳时间(O(√n))要快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信