Achieving higher performance of memcached by caching at network interface

E. Fukuda, Hiroaki Inoue, Takashi Takenaka, Dahoo Kim, Tsunaki Sadahisa, T. Asai, M. Motomura
{"title":"Achieving higher performance of memcached by caching at network interface","authors":"E. Fukuda, Hiroaki Inoue, Takashi Takenaka, Dahoo Kim, Tsunaki Sadahisa, T. Asai, M. Motomura","doi":"10.1109/FPT.2014.7082799","DOIUrl":null,"url":null,"abstract":"As the volume of data that web services handle is becoming larger, many web service providers are utilizing memcached, an in-memory key-value store to improve their web server's performance. While memcached usually runs on a server with a high performance processor, various hardware platforms has been evaluated for running memcached in order to achieve higher performance. Recently, several works that use FPGAs have successfully achieved higher performance than Xeon. These works, however, struggles to utilize a large memory with FPGAs. In this paper, we propose a system that enables us to overcome this problem and enhances memcached by caching a part of software memcached's commands and data to the network interface card equipped with an FPGA and a DRAM. Our evaluation showed that the NIC cache has less than 30% of hit rate for workload with Latest key selection distribution, and 30% to 60% for Zipf distribution workloads.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"59 1","pages":"288-289"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As the volume of data that web services handle is becoming larger, many web service providers are utilizing memcached, an in-memory key-value store to improve their web server's performance. While memcached usually runs on a server with a high performance processor, various hardware platforms has been evaluated for running memcached in order to achieve higher performance. Recently, several works that use FPGAs have successfully achieved higher performance than Xeon. These works, however, struggles to utilize a large memory with FPGAs. In this paper, we propose a system that enables us to overcome this problem and enhances memcached by caching a part of software memcached's commands and data to the network interface card equipped with an FPGA and a DRAM. Our evaluation showed that the NIC cache has less than 30% of hit rate for workload with Latest key selection distribution, and 30% to 60% for Zipf distribution workloads.
通过网络接口缓存实现memcached的更高性能
随着web服务处理的数据量越来越大,许多web服务提供商正在利用memcached(一种内存中的键值存储)来提高其web服务器的性能。虽然memcached通常运行在具有高性能处理器的服务器上,但是为了实现更高的性能,已经对运行memcached的各种硬件平台进行了评估。最近,一些使用fpga的作品已经成功地实现了比Xeon更高的性能。然而,这些作品很难利用fpga的大内存。在本文中,我们提出了一个系统,使我们能够克服这一问题,并通过将memcached软件的部分命令和数据缓存到配备FPGA和DRAM的网络接口卡来增强memcached。我们的评估表明,NIC缓存在使用最新密钥选择分布的工作负载中命中率低于30%,在Zipf分布工作负载中命中率低于30%至60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信