Shi-yong Tan, Wei Zhang, Feng Jiao, Yongchuan Zhou, Lu Yang, Wenwu Shi, Zhiguo Wang
{"title":"First‐Principles Molecular Dynamics Study of the Threshold Displacement Energy in LiFe5O8","authors":"Shi-yong Tan, Wei Zhang, Feng Jiao, Yongchuan Zhou, Lu Yang, Wenwu Shi, Zhiguo Wang","doi":"10.1002/crat.202100076","DOIUrl":null,"url":null,"abstract":"The threshold displacement energies (TDEs) of lattice atoms in lithium ferrite (LiFe5O8) are calculated using first‐principles molecular dynamics simulations. The TDEs vary with crystal direction and sublattice. The weighted average TDEs are 34.65, 28.54, 38.85, 37.92, and 34.31 eV for FeTetra, FeOct, Li, OI, and OII atoms in LiFe5O8, respectively. The FeOct primary knock‐on atom (PKA) has the smallest TDE. Various defects, including vacancies ( VFeTetra , VFeOct , VLi , VOI , and VOII ), interstitials (IFe, ILi and IO), antisite defects ( LiFeOct , LiFeTetra and FeLi ), split interstitials ( DFeFe , DLiLi , DLiFe , and DOO ), crowding defects (CrowFeFeFe) and exchange defects (OO), are formed by low‐energy recoil events. The effect of the presence of these defects on the magnetic behavior in LFO is investigated using density functional theory. The occupation of the octahedral and tetrahedral sublattice in LiFe5O8 has an important effect on magnetization. The net magnetization decreases or increases when a Fe atom at an octahedral or tetrahedral site is replaced by a nonmagnetic atom, respectively. These results are helpful for using irradiation to tune the magnetic behavior of LiFe5O8 and applying magnetic devices based on LiFe5O8 in the presence of irradiation.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100076","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The threshold displacement energies (TDEs) of lattice atoms in lithium ferrite (LiFe5O8) are calculated using first‐principles molecular dynamics simulations. The TDEs vary with crystal direction and sublattice. The weighted average TDEs are 34.65, 28.54, 38.85, 37.92, and 34.31 eV for FeTetra, FeOct, Li, OI, and OII atoms in LiFe5O8, respectively. The FeOct primary knock‐on atom (PKA) has the smallest TDE. Various defects, including vacancies ( VFeTetra , VFeOct , VLi , VOI , and VOII ), interstitials (IFe, ILi and IO), antisite defects ( LiFeOct , LiFeTetra and FeLi ), split interstitials ( DFeFe , DLiLi , DLiFe , and DOO ), crowding defects (CrowFeFeFe) and exchange defects (OO), are formed by low‐energy recoil events. The effect of the presence of these defects on the magnetic behavior in LFO is investigated using density functional theory. The occupation of the octahedral and tetrahedral sublattice in LiFe5O8 has an important effect on magnetization. The net magnetization decreases or increases when a Fe atom at an octahedral or tetrahedral site is replaced by a nonmagnetic atom, respectively. These results are helpful for using irradiation to tune the magnetic behavior of LiFe5O8 and applying magnetic devices based on LiFe5O8 in the presence of irradiation.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing