Finn Klessascheck, Tom Lichtenstein, Martin Meier, Simon Remy, Jan-Philipp Sachs, Luise Pufahl, Riccardo Miotto, E. Böttinger, M. Weske
{"title":"Domain-Specific Event Abstraction","authors":"Finn Klessascheck, Tom Lichtenstein, Martin Meier, Simon Remy, Jan-Philipp Sachs, Luise Pufahl, Riccardo Miotto, E. Böttinger, M. Weske","doi":"10.52825/bis.v1i.39","DOIUrl":null,"url":null,"abstract":"Process mining aims at deriving process knowledge from event logs, which contain data recorded during process executions. Typically, event logs need to be generated from process execution data, stored in different kinds of information systems. In complex domains like healthcare, data is available only at different levels of granularity. Event abstraction techniques allow the transformation of events to a common level of granularity, which enables effective process mining. Existing event abstraction techniques do not sufficiently take into account domain knowledge and, as a result, fail to deliver suitable event logs in complex application domains.This paper presents an event abstraction method based on domain ontologies. We show that the method introduced generates semantically meaningful high-level events, suitable for process mining; it is evaluated on real-world patient treatment data of a large U.S. health system.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"22 1","pages":"117-126"},"PeriodicalIF":7.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.39","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Process mining aims at deriving process knowledge from event logs, which contain data recorded during process executions. Typically, event logs need to be generated from process execution data, stored in different kinds of information systems. In complex domains like healthcare, data is available only at different levels of granularity. Event abstraction techniques allow the transformation of events to a common level of granularity, which enables effective process mining. Existing event abstraction techniques do not sufficiently take into account domain knowledge and, as a result, fail to deliver suitable event logs in complex application domains.This paper presents an event abstraction method based on domain ontologies. We show that the method introduced generates semantically meaningful high-level events, suitable for process mining; it is evaluated on real-world patient treatment data of a large U.S. health system.
期刊介绍:
Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.